
A-O-AOBA 676 AEROSPACE CORP EL SEGUNDO CA ENGINEERING GROUP F/G 9/2
THE ECLECTIC SIMLATOR PROGRAM (ESP) USAGE GUIOE.(U)
MAY 8O E R COFFEY, H J WERTZ F04701-79-C-0080

UNCLASSIFIEO TR-0080(9320)-i SD -TR-80-21

-7huhffuhhubuu

Ehhhhhhomhmmu
EEIhllllEIIllIIIIIIIIEIIEEE

EIIIIIIIIIIIl-

4. 11

= IlIll22

I -- iiI II iI I.6

MICROCOPY RESOLUTION TEST CHAqT

NA ONAL RtU)R14C F STANDARDS I9b3.

REPOR! SD-TR46O-21 t

t C SI ' ORA M

0

Usage Guide

EMMAGENE R. COFFEY
in Association with

HARVEY J. WERTZ
Mission Information Systems 1iision

Engineering Group
The Aerospace Corporation

El Segundo, Calif. 90245

1 May 1980

Interim Report

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED

THE AEROSPACE (CORPORATION

Prepared for

SPACE DIVISION
AIR FORCE SYSTEMS COMMAND

LOS ANGELES AIR FORCE STATION
C-1) P.O. Box 92960, Worldway Postal Center

LU Los Angeles, Calif. 90009

S80 527 078,.._, __ .72 .,

UNC LASSIFIED
SECURITY CLASSIFICATION OF TIS PAGE (Whan Date Xnerod)

.~ REPORT DOC~UMETAIONU PAGE READ INSTRUCTIONS
4 1 j BEFORE COMPLETING FORM

.REPO ____ NUMUER 2. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMBER

S SD I ;TR-8 -.211
4. - --an S. TYPE OF REPORT & PERIOD COVERED

J ,THE gCLECTIC 5IMULATOR ?ROGRAM (ESP)/ Interim Report
USAGE GUIDE, ~7-1-75 to 12-1-79
RE, --- O r, ,' t . ,,Jw/NUMBER

, -(''if TR-0080(9320) -
. CONTRACT OR GRANT NUMSE)

Emmagene R./Coffey, Harvey J./Wertz / F47 1-79-C-

RFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

The Aerospace Corporation
El Segundo, California 90245

II. CONTROLLING OFFICE NAME ANr) ADDRESS 2. REpOnT OATL. __

1 May 1080

U. NUM99-OF PAGES186

14. MONITORING AGENCY NAME G ADDRESS(Il different from Controlling Office) IS. SECURITY CLASS. (of this report)

Space Division
Air Force Systems Command Unclassified
Los Angeles, Calif. 90009 1s. DECLASSIFICATION/DOWNGRADINGSCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

!7. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

SIII. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on revere* aide It noceeary and Identify by block number)

Simulation Hysteresis Nonlinearities
Integ ration Computer Simulation
Numerical Integration Predictor- Corrector Integration

\Ordinary Differential Equations Runge-Kutta Integration
,\D scontinuous Driving Functions

20. "AASTRACT (Continue an reverse aide If necessary and Identify by block number)

The Eclectic Simulator Program (ESP) is a system (a precompiler plus a
collection of subroutines) that permits the fast, easy solution of ordinary
differential equations. Any user with a general knowledge of FORTRAN can.1 utilize ESF's many labor-saving devices to code a problem with minimal
effort. Special ESP features permit translation of engineering blocks, dis-
continuities, and hysteresis patterns directly into computer code, and the use

(C FORM 1473 UNCLASSIFIED

,__ACSM__LE)__,_"_/

UMITY CLASSIFICATION OF THIS PAGE (When Dote Enered)A
Aft-'L l ,i --a-..,.:. . .. !Q!" "

UNCLASSIFIED
A SECURITY CLASSIFICATION OF THIS PAGE(Whcn Date Eateid)

IS. KEY WOROS (Continued)

Simulation Language
Precompiler
Matrix Expressions

, STRACT (Continued)

of WHELP in conjunction with ESP facilitates efficient coding of matrix

algebra equations. Simple input cards enable the user to directly control
solution and timing accuracy and to specify or change run times, initial
conditions, and various other parameters easily when making multiple or

stacked runs. Finally, ESP allows the user to select from a wide variety

of output options. This manual is intended to be both a learning tool for
the novice and a detailed reference for the experienced user.

AjC C e t3

kt
II

UNCLASSIFIED

4 SECURITY CLASSIFICATION OP VNS PAOGflhma Data Eantord0

PREFACE

This revision of The Eclectic Simulator Program Usage Guide was

prompted by a number of modifications and improvements to the ESP package

which have been made since 1975. The primary reason for the changes was

the desire to have common versions of ESP and WHELP available on both the

CDC 7600 and the IBM 370. From the user's point of view this has been

achieved even though both WHELP and PRECOMP are written in PLI for the

IBM 370 and in FORTRAN for the CDC 7600. There were, however, a

number of changes required which will affect existing programs. The first of

these is a revision of variable and common block names. The second is a

revision and restructuring of the major subroutines to simplify program flow

and logic and to improve error control and handling of potential job abort

situations. The third is replacement of the former default integration algo-

rithm with the Shampine variable-order/variable step routine, which appears

to outperform the Hamming Predictor Corrector in both speed and accuracy

on a variety of applications tested thus far.

In effecting these changes to the ESP package, considerable effort has

been made to minimize changes required of the user. The only pervasive

changes affecting the user are the shortening of variable, subroutine, and

common block names to six characters or less and some rearranging of

common blocks, both necessitated by IBM FOgRTRAN constraints. In general,

the contents of this guide reflect a CDC orientation with IBM counterparts

noted where possible. However, an ESP program written according to this

guide may be run interchangeably on either IBM or CDC by simply changing

the appropriate control cards.

In addition to revisions of all portions of this guide reflecting the above

changes, the appendix relating to WHELP (Appendix H) has been greatly

expanded to include all current capabilities of WHELP. Notice that WHELP

may be used with or without ESP, and thus Appendix H may be used without

V

A 1
|A

reference to the remainder of the guide and is in fact the most complete

current documentation of WHELP.

Hopefully, this will be the final major rewrite of both the software

anct the documentation. In particular, this edition of the manual has been

designed for easy updating when the inevitable (wishfully small) changes are

made to the software.

iV
vi

t° i ".

CONTENTS

1. INTRODUCTION. 1-1

II. SOME SIMPLE EXAMPLE PROBLEMS.................... 2-1

A. Example I.....................................2-1

B. Example 2.....................................2-2

Step 1. Statement of the Problem. 2-2

Step 2. Analysis of the Problem 2-3

Step 3. Coding of the Program 2-6

Step 4. FORTRAN Version of the Program- 7

Step 5. Output of the Program- 16

III. DEFINING DERIVATIVES 3-1

A. Defining the Derivatives as First-Order
Differential Equations 3-2

B. Defining the Derivatives in User Variables 3-3

C. Defining the Derivatives as Engineering

Blocks (*BLOCK). 3-5

IV. INTEGRATION PACKAGE 4-1

A. General Information 4-1

1. Options 4-1

2. Stepsize Selection 4-2

3. User Control of Stepsize.... 4-2

4. Controlling Solution Accuracy 4-3

B. Adams Integration 4-4

C. Runge-Kutta Integration 4-6

1. Fixed Stepsize 4-6

2. Variable Stepsie 4-6

3. Error Control 4-7

4. Inputting Values at Discrete Intervals. 4-7

Vii

CONTENTS (Continued)

D. Predictor-Corrector Integration 4-9

1. Variable Stepsize 4-9

Z. Fixed Stepsize 4-10

3. Error Control 4-10

V. DISCONTINUITIES 5-1

A. Detecting a Sign Change (*SWTCH) 5-2

B. Hysteresis Nonlinearities (*SWMEM) 5-5

1. Defining Input to a SWM.EM 5-6
2. Defining Output of a SWMEM 5-7
3. Defining the Characteristics of a SWMEM 5-7

4. Initializing a SWMEM 5-10

C. Locating Events which Do Not Affect Integration 5-10

D. SWTCH's and SWMEM's: Extended Usage 5-12
1. Alternate Ways to Define SWTCIH and

SWMEM Inputs 5-12

a. User-Written Functions 5-1Z

b. User-Written SWINPT and SWMEMN. 5-14

2. User-Computed SWTCH and SWMEM Output 5-14

E. How the Switches Work 5-15

F. Controlling Timing Accuracy of Discontinuities
(*HSW, *HSWM, and *HSWE) 5-18

VI. OUTPUT 6-1

A. Printed Output: Automatic Formatting 6-1

I. Printing ESP Variables (*PRINT) 6-I

2. Printing User Variables or Computing Output
(*OUTPUT... *ENDOUT) 6-3

3. Accuracy of Printed Values 6-4

viii

CONTENTS (Continued)

B. Graphic Output 6-5

1. Storing Plot Data 6-6

2. Plotting Output (*GRAPH) 6-7

C. Printed Output: User Formatted 6-11

D. Data File Output 6-13

1. Data Written onto TAPEll 6-13

2. Data Written onto User-Named File 6-16

VII. INPUTS 7-1

A. Number of Derivatives, Start/Stop Times, and
Print Intervals (*RUN) 7-1

B. Initial Conditions: Known Constants (*IV) 7-2

C. User Parameters: Known Constants ("PAR) 7-3

D. Initial Conditions and Inputs to be Computed
(*ICCOMP... *ENDIC) 7-5

E. Data Input from Cards or User Files 7-6

F. Inputs to Control Accuracy. 7-7

G. Miscellaneous Inputs 7-7

1. Print Headings 7-8

2. Title for Printed Output 7-8

3. Program Control 7-9

APPENDICES:

A. CARD FORMATS AND DECK STRUCTURE A-I

B. CONTROL CARDS AND FILE USAGE B-I

C. PROGRAM VARIABLES AND RESERVED NAMES C-i

D. PROGRAM CONTROL AND EXECUTION D-1

ix

1A

CONTENTS (Concluded)

E. INTEGRATOR EQUATIONS. E-1

F. SPECIAL CASES: MULTIPLE RUNS AND LARGE

SIMULATIONS. F-I

G. DEBUGGING SUGGESTIONS G-1

H. WHELP H-1

REFERENCES.-

INDEX. J-1

FIGURES

1. Step Sequence for Starting Procedure 4-9

2. General Form of SWMEM Nonlinearity 5-5

3. SWMEM Characteristics 5-8

xi

ILI

I. INTRODUCTION . 1 -

Iwo,
4

I II . ..w .

SECTION I

INTRODUCTION

The Eclectic Simulator Program (ESP) enables the user to solve

ordinary differential equations with speed, accuracy, versatil4ty, and mini-

mal effort. The user codes only that information unique to his particular

problem: the differential equations, initial conditions, and desired output.

This information must be coded in ESP language, which is a special purpose

programming shorthand developed just for this program, and documented in

this manual. ESP then does literally all the remaining work.

To accomplish its purpose, the ESP system is composed of two parts--

a precompiler and a set of FORTRAN subroutines. The precompiler reads

the ESP shorthand code written by the user (This code will not look like a

FORTRAN program.) and translates it into FORTRAN, while adding the

necessary cards (such as COMMON block, DIMENSION statements, and

RETURNS) to produce complete and executable FORTRAN subroutines. The

output of this precompiler is then joined with the second part of the ESP

package, the subroutines which do the integration and other chores, to form a

complete FORTRAN program which is then executed by the computer.

ESP is not only highly efficient in terms of both user's effort and com-

puter running time, but it is also highly flexible. A number of special capa-

bilities, labor saving devices, and alternate means to the same ends are part

of the package; however, the user has considerable latitude in deciding which

features he will use and how large or how small a problem he wishes to solve.

Briefly listed below are some of the distinctive features and capabilities of

ESP:

0 The derivatives are normally defined as first-order differential
equations, but may instead be translated directly from engineering
block diagrams to *BLOCK cards without any intervening algebra.

1-1

The basic integration algorithm is the highly efficient SHAMPINE
method, which combines variable stepsize with variable order
integration in response to continuous error checks, but the user
may opt to run ESP using any of several other integration algo-
rithms, namely, second- or fourth-order Runge-Kutta, or
Predictor-Corrector (which uses Runge-Kutta as a starter), any
of which may be run with either a fixed or variable stepsize.

* Significant sign changes, discontinuous driving functions, hyster-
esis nonlinearities and the like may all be accurately and easily
coded into the system by means of special ESP language command
cards.

0 Output from an ESP program may take many forms, such as auto-
matically formatted print, user-formatted print, calcomp pen
plots, printer plots, microfilm plots, or m, netic tape files.

0 Since inputs such as initial conditions, run times, and parameters
can be easily changed, a series of runs or a set of "stacked" runs
can be made with a minimum of effort.

* The user can directly control the degree of accuracy required for
the problem solution and also for the timing of discontinuities
with simple input cards.

* Vector-Matrix expressions can be used in their natural form to
compute derivatives, by using WHELP along with ESP.

This manual attempts to meet the needs of both the novice and the ex-

pert user of ESP. It is hoped that sufficient explanation and examples have

been given in Sections II through VII to enable the uninitiated to write a suc-

cessful program. On the other hand, considerable detail has been included

throughout to aid all users in answering their own questions and debugging

their own programs.

Section II includes a straightforward example of ESP usage, from

problem definition through printed and plotted output. Careful study of this

example and its annotation should give the user a helpful overview of how

ESP works and how the various parts of user-coding relate to each other.

Referred to in this manual as ADAMS because it is an Adams-like method
and SHAMPINE is too long for a FORTRAN name

1-2

Following this example, material is arranged topically by sections, one

section for each major aspect of setting up an ESP program: defining the

derivatives, selecting the integration method, modeling discontinuities,

specifying output, and defining input. Each section begins with an overview of

the capabilities relating to the section topic, and then discusses each in detail,

starting with the simplest and most basic usage and progressing to more

complicated options and considerations near the end.

It is strongly recommended that the user's first attempt at coding ESP

involve a fairly simple problem or a simplified version of a larger problem,

and that more complex aspects of ESP be added only after the basic ones are

well understood and seem to be working properly. In keeping with this

approach, it is suggested that the user study the example problems (Section II)

and read the first few pages of each of Sections III through VII before attempt-

ing to code his first problem. Later parts of Sections III through VII and the

Appendices may be regarded more as reference material and used only as

needed, although particular attention should be called to Appendix D, Program

Control and Execution, for those who wish to understand more fully how

ESP works. The Table of Contents and Index should facilitate easy location

of any other material of interest.

*1I

i.! .
i 1-3

I. SOME SIMPLE EXAMPLE PROBLEMS.................... 2-1 '00

A. Example 1 .* 2-1

B . Example 2 2-2

Step 1. Statement of the Problem 2-2 cn

Step 2. Analysis of the Problem. 2-3

Step 3. Coding of the Program 2-6

Ste p 4. FORTRAN Version of the Program 2-7

Step 5. Output of the Program. 2-16

SECTION II

SOME SIMPLE EXAMPLE PROBLEMS

To aid the user in obtaining an overview of how ESP works, this section

consists solely of two example problems. The first is a very simple or

minimum problem and includes the statement of the problem and the coding

required to solve v: using ESP. The second example is slightly more com-

plex and is fully discussed from problem definition through analysis, coding,

and resulting printout.

A. EXAMPLE 1

Problem: Integrate the following differential equations from t 0 to

t = 10. 0sec, printing t, Y, and Y every 0.5 sec:

Y cos 0 Y + Bt

S= Y{ + sin 0 Y

whe re

all initial conditions = 0.

0 = 0.4*t

B 0.142

Coding:

[Control cards-- see APPENDIX B]

*DERIVS
THETA = 0.4*T
DY(l) = COS(THETA) * Y(I) + 0. 142* T
DY(2) = DY(l) + SIN(THETA) * Y(1)

*ENDDERIVS
*PRINT TIME = T $ Y = Y(1) $ YDOT = Y(2)$ $
*RUN 2 0. 0.5 10.0 $

2-1

B. EXAMPLE 2

This example will be presented in detail from problem definition through

to the output of a completed program in five steps. Step I is the statement of a

problem as the typical user might define it. Step 2 shows a step-by-step

analysis of this problem and translation of its characteristics into ESP code,

while Step 3 illustrates the actual arrangement of this code. Steps 4 and 5

are provided by ESP and show the FORTRAN output of the precompiler and the

actual printed and plotted output requested by the user.

-4
s + b 2 + 2 ¢ s + (2

STEP 1: STATEMENT OF THE PROBLEM

Integrate the above system from T=0. to T=0. 5

Inputs: G = 5.0

G 2 = 1.0

a =0.1

b - 0.01

-- 0.5

ci) : 1.OE1

All initial conditions 0.

2-2

Akr

Outputs: Print every 0.02 second the following values and labels:

Time = T

Error = 1.0- G2 Y 3

Output = 3

Plot: Output versus Time

Error versus Time

STEP 2: ANALYSIS OF THE PROBLEM

1. The number of integrations required (3), the run interval and the print

interval will be specified on the *RUN card

*-RUN 3 0.0 0.02 0.5 $ [See Section VII-A]

2. Input constants will be input on a *PAR card and equivalenced to their

names in the equations so that later they may be easily changed.

PAR(l) = G I = GI = 5.

PAR(2) = b = B = 0.01

PAR(3) = a = A = 0. 1
Set PAR(4) = = ZETA = 0.5

PAR(5) = W = OMEGA = 1.0EI

PAR(6) = G 2 = G2 = 1.0

I by using *PAR 5. 0.01 0.1 0.5 1. E1 1.0 $ [See Section VII-C]

3. represents the following characteristics:

Il input = 1.0-G z * Y3

If input :< 0, output = 0.
output = If input > 0, output = 1.0

To detect the exact point at which the value of input changes sign and to

set the proper output, the *SWTCH feature will be used:

*SWTCH 1 1.0 $ 0. $ 1.0-PAR(6)*Y(3) $

[See Section V-A]

2-3

t..-

4. is equivalentto Y1 = G 1 ;-input-b*Y()where
s b YI input -- SWCHI which is the value resulting

Efrom the *SWTCH statement.

This will be coded as

DY(1) = G*SWCHl - B-'Y(1) (See Section I1-Al

. i Y is a second-order block which is equivalent to

s Z + 2 ws+w

This could be solved for Y3 in terms of its auxiliary function Y2 and coded as

DY(2) = A*Y(I) - OMEGA**'-2*Y(3)

DY(3) = -2. 0*ZETA : -OMEGA -Y(3) + Y(2) + Y(1)

but it is faster and easier to code it by using the *BLOCK input feature

*BLOCK 2 1.0 A 2. *ZETA-0MEGA OMEGA **Z Y(3) Y(2) Y(1) $

(See Section III-C]

6. Printing and storing of plot data will be done by using the *PRINT

statement

*PRINT TIME=PLOT(1)=T $ ERROR =PLOT (2) =1. 0-PAR (6)*Y(3)

OUTPUT=PLOT(3)=Y(3) $ $ [See Section VI-A-1J

7. Printer plots with all default features will be generated by using

*GRAPH 1 3

S OUTPUT VERSUS TIME [See Section VI-B-2]

*GRAPH 1 2

ERROR VERSUS TIME

2-4

8. A title will be assigned to all output pages by using the *TITLE card

"TITLE EXAMPLE FOR ESP MANUAL

[See Section VII-G-2J

2-5

.

.0

> >.

.--

a. CL 4~-

m~ CIs "t ;t 0 I

U) -t -0 .. zu ii " a

a. at eg . a u '

- -a 14 .

N -E -a ft6
I- 0. - a 4 cc "I I

N -. Q 46

w 04 *

LUU

$1 0
IX-.-o I 0U

- 0-I a. 0 O < .- 0
Or (v LD 0 w 4 w.4

a. *~ in
co 2c' 0 40 ' 40 1.

-- 0 0 It-. .

Pft a. *I -1A U) Mn cn wjaaju -- a 0:n m.~ U)
a. z D 1.4 _j-' >4 w 0a

a. * L . - . a!- r 4 > a . -'zi w

V)~~ LU K
C, > .c l I. w m L.-

m wm I- wm mo

T T

2-6

AA

C4

-T a
"4 4 , . 4

- Cl

't
o%

m t

IL CL

,40

4.. -- (

9L >
0~

-t V)
44 z 4 O C,.

.0
ax-C
4L Ui Un

0 .42

on 0I 0

m I-4 w m0U

Za- % CJ ,O

N4 Q. to
-a LL. w

a- r-~(I2-7

<4u

C!

u
4 :

ILS))C.U l

0't q0 -0

x - zlx z '

NJ N a%.II U
'C 4~3~4cz

E 0 r i

N wz ww ww co40 toCA U

IM IM IM I
2LZ~ .,. m t

E0 Luma-C Itj

p .!2 m* X zrt e - Z0t .
ND=ZC .t ,, a

r- l!- -t

OMU CIL x 00 t~~"cr I

xC 4 1 L I

UO (n C CK 0

a. >w I. aU U r4 11 w1..'A.
I-MW X Ut-I tz D

" 'I0 , 4 I W N ~ _j Ut u11

coNI J t r- 0

m " 8 :) u~.> -4) >. Wu = w
go Y)UUwl.J m"I ' -- 0 0 Ix l S

w Z>l. -- t til 4 U4I4 4 c r z
0C LL O-tO.WwZ II CDCU

r- I-l4NN-tOMtJM Z
w UZ 4 II 09 Z 1

Ht VtC)U 0 a ' a W j

00. I..w WWzohbW . Z o)C

94 CL 0 0

Ut co"00 0 14 uOE

UL

2-8

42

IAo

1+~

w~' CA -. . A(
LL.lJO c~

o z - w ui q

aa 2Ex .--

40 a. I~.
CL w A

UA (AriS

to L U I U L UD

-4 > ni 1 z a'N a .- l 1> -L
40 0 V) C crD c

I'- Ix=

U)4C z C 4 -

tn: -j

CL J WI -. J 09 U

.4 wa -D O Z ZD, 1

a.~> 1.41) CD H22 .

CA4 N. 04 IxlxIx L-IU

'0~ ~~~ u011 a4a

> IA

ILn
+0

.4

Ixa

4)
X 0iS

.0

-1 !-C (0 (m0
>o = = x

D 1421.

An Z x444D

N Lu - x11w&

D (n z L C
z- 0)

rL LL) w'D ' 0 -

x I

0 0 m

0 0

0 InE 4 = w4
Z. r.> 1-m X:"

r)0U .E)I)I %-

10

10

40

LA

'-4

o w
S.J Lu~~a W

0

Q0 x
LA LA- 4- CL

>I- > 00 P.

z -r
,6: 4nUL z IL WJ J

o1 X o I DC- -4 LW-EO *

0L A-1

>0 I4

>ELIA 0 wl

IL LA L .4LA.
.4 u-. IL4> oVz *

r, Ui 0 1111 1 1-41 LAUO

<L0 000 -C

DZ .-- Z 0. ..
.0 z A .OO -C:E 04i Km 1: -l z 1 z z

o~ LAU 0IJ'

Ix C m LA - i . L
DLaA LA 00 UJOE. 4w<w g < L O.m

.4A Ix H xg [EU
400100N

gl 0 inz 1
2-11 0C3

I~Ll

4- 4
A.

af

I-

.0 0

41

.0 u

zzL

f- Ix
IA.

0 .z Ix -C

y In

I-A zz j
I-- 0.- 4-

0 0o r
0

LJ4 Ck
PO .9 o 0

.0 -4 A.Ii

r- I~l I IL-12

a.

U) 0> E

-aU I- EI

-l Lu

o Em
.0j. . . .ai *4- a.- j - j - j - j j _ j - j - j - - 1 j - i - i - j - I- j -1- i

-O I 0 DD m f4 ,O ~ w ~ o o ~ ~ ~ rrq~ N4r t~~
o-a-lt l m w O im M M 4 f in n A Ir m 0 WNna l 0 4L l l tCL" t141 1 tc Q % j14 NL i nmCi0 0"1

-l r- 14 H In 1 110

z C
oU 4 0mr j40 4N. 4 aI fIIN1 0 a 0a0 n 04 NI

m 4 0 C mC lr n I 1 4 mNInc: H10r MLAN n 0r N" 44m 0 0 Tm E

7- 0l 0 -l 0z. w0U :u - = . - xV

0

-l -13

C4

0.

*'C

IL m

w Z
N.L

0

* .0 i.
0c

IAMM mw-4M, ot 0O.ttml
m w tmm 1 in f m P ' vI ivI -Z pe iI itr 3r nI - '

C. CI ,cv 0Tm w I ~ w I f 10 1 1 nI iwI 4I tC

X L

LL. 2

CL i It11 11 11 I I.S. ~ l 1111 11 1 111 f1tiI t M 11 1 11 I I I

>a.W.11. .NiU j> 0 Uiw (NN z-N N' Zl11,-l l 0~ .4 - -.12' 0 U z 0m nr0-o

2-1

4
a.S

1-U)

"4 0
wC

o @2

r--
'0 xx xx

I. -I .aF.P-)-

04

m r4

0 LA
4l - . C

(n 0(- 0 HC - UIJ

0~ m 41 t0:4 1-r

u L IL. oz oo o U.U U I.I.

uI 1:1" 11~~~JLA 0J -J~ 4~J~ J

2-15

a-a
00

CL .
cc9

co C.

CD 0

CD 0 0
00
CD 0

Is . L

00 C3 4 04 0

a AU Ix 16
In a0 01 I0> 0U a ~ 0

-i to H W LLn

W 0 -j> C

0 -C1J~l .9 inJ >n Ix .r ~ ~ CD-II- C, 0 ~ C

IL "I -i 4 z 0 C

I ~ -V) Ix 0 i C j - 0D0

IL Iw V~.) IL 4f 4 4

w IL M

a. C
40

.I

0 00

2-16IA

E-4

U

UL

.49

CL 0 c

0 CS

CCo

LU lu Lu u Lu UL Lu J Lu Lu Lu Lu LuLuL LL. u Lu Lu . Lu Lu Lu CL .2 E-E
(U wU. IT 4 10. 4 0 fn ' 0 O NO' .% 0 CO 0 mO It' .4 mA 100a- I .4

"' N N N m , C. " " - 00,AO4 , 0 , ", AGU
4 -

N
N t1 tNN0m0 41 n DmwwLu

Sa . It N 00 N O w' C.ar -C U 4 IA 00 CCo .4. It N m' a w m"
T2 N 4 CD o IA. n WU CO t, WC 0 a 0.40 N C j ' r4. in M .2 IA o

0 u E~ E "

1 0 E E E E E
a. Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu Lu ru Lu r4 Lu LU4u Lu Lu u10

Lnu . n 0 m .4 U) f'O'(Ja0'O co 0 0.co IT N 0 C Cn 10 w.
w 0a N.4'w0N ,-4(N a- a0 acpO 40)F'm It 10CPO. 0 IA CL 0..

0x a.'''OONOOAA????????'2''.? m. = -

a. . :
Lu (
in0

Lu W 4 MUU((r4 4 fr4 4 M 4.4M .44,4r 4 N M u
C, 0 0 00 0 0 0 00 0 0 0 eU IA

li i I I I I IIIIIII I l Il I11 1 0! r4w wuiU, w uu. u~L . UU, w w wu w LU W W w w wu~ w LA
eoooa ooo3C3C co o o o oo o o o CDN)0C)C D.0mQC)0
0000 0aa a Cam 0C>000a0 aoa aOO OM
00 0 0 00 0 0 0 00 0 0 0

0' 0 a a a a0 3,0 C 000a0CDa 30C0 CO D 00.

-1 0 CO Lu M k JC CJWMMP n 4s t I

4o

2-17

0

IVI

1 4
I

I UJ

0

I .

.s-i a j 0 O*0CA w 0N 0 a j e 0P

0 0 C 2 4 C 3 4 , 00 0 .4
01j It

W, C ,1 , W

0,
co o -t

n W
O

2-18

*1C

IL'

C,

'LI

4.7D

14

C3

4-

4
cli 42 o a 0 C5 a r 0 M -01 0 r 0 o ' 0.

tq 0 ci 4 C) Q Cj0 It414 42 oo 4 C3 ,, T*

Lj LS U LU U 0 W i 0:C! C! a, GoI 1 0 1 10 11 . 1*

'2-1

00

'A-

coo

0.3,

0~4 0 A -

In 1 uj U.1
a~~~~4 mW-1. .

to >. >- mCD>

(n U)Ui N l % L t L
C:) x .r F 3 -zw U-f , r L

in Q 0 aUS ar. 0D 4
C3. 0 z 0ix~~~ ~ ~ ~ 9x 10c 10WM9

I. L. 0 - 0C. x t 1 ':I -fu-,4 C 0 0C, A 100 E01 C 0 14 - -x HOOin -I w 00.4= V
).- U Lu Lu .1 0 LI r4 LUto Itco -1 -jZu C)-

-4 . - =) H - . II J" "-
1" Nu u -q u IL It V) -x CmJ
a . U L .4b- C 0 1 -1 -41

1. . . . - X _ N C111 L) u ,i
I. oI. uWI 4m'o U1 I)o

1-- z0C .. i
-j- ' z - 4. 1'C LIIIz m W

Coi 0 L : P-4 -I ;t -I ,Q -w1

U) -101 - A z z H7i 4I .07 t> C L -0z-
a2Lt0 . - -OTC 1z z t , o .M .70. 0. I - 0 \ I
U0 0 0 j C nuI -. . .uc L:- r - . .

LU CL LU C
z . -; 1 -m> . u >- wI-=0u1 .

11 - 4(. - WDc f 1 c:): -W w> I I .

'4 .^ mD *,P, .
0 ti 0. co to "*1*,0VN jC l L - 0 1- 1-M n0- T>

N IT rq 2: " I I- j II mi)*) 05 >.I- = 1 30 C . 0*
r, U) I() rL LU ." LU Cr l '-S -: qn -X > 4AU J- -3 IJ ~ A
i eo C1 o 2i- nI Xu A :wZI I- , N r- r, ,

Z)i U) () .4U - IIH L) -4 *.101fa ~~l Il"U rr
0Co I- - >- 0 0- *1* L m3inI->mmcxc zC

r4 zX , L) OXO- I. Z A LE) w_ LU >-~ w 0 .U U)4 W4
Vt '0 ,c q .4U --1 mw LA. -i x .4 . III4 9k u M " ULJ 042 0 0 0 *N 1- 6 *1 1- 1 0 a I I- I-4 I I I

U H 4))'
.0 V)a UeJ 0 4)) t

U)4 0i " ; P4 c 0 0 1 M- 0 N,) , H* M,- me 1* i:
0 l 0WU.00 .0, 00 4 a 000 W H 4 a0 0U 0-400 0U H 0 LU U)C04U) 01 L-&L L. ,

C2 IL D- LU1 D'D O.1 -1 -4 OW m- r4U =t r-0 .J -Z
rN I -0 1201 nP1Ir m Z 10 IN 0 H3 aI (.J)I.0 tmNOmP4IinG01y it0r- nItn t CD-4 .0 a 10 itIrN -

o 4 v noc ~ 5oc at 1- q 44 OH4 LUi P- OH4 L .H 4O fMP fe 1 - 4MP4oIr M 1~ o-4 f P4rN- r 1- - 1e
.0 CD -C 3C i 3 M 0 C H LU 0 H C)0) Ui. C t C (3,C3U) C a 00 3CD C 3 00 C.- . >0 4ftI-Q U)C30 a

I.Ij ~ ~ v) LUM U) U)C ,C C c)C) a L3UMC 4 3 ~ : C)~ *2 C-) 0C C -Iai C C3 I-, 0 CD I- I.) CD J)
4 ZD..IU C3QC z 0000C. 0 C) 0 N0wC . .000c aC12C 0"a C3.I * I-; aO ab. a> Uw)a a a Q

CL i r -N N. N 0 aH1) 0-U Q U 0 H .0ai A O% f C A CH -4 0)0 10 0 0 0- 01 CC>-0- 00Q C C 0- t r-C N t4 W4i NCS

r- U) -1~sZJ ...- U'-U 14 r U IM11 4r- - 0 1-f - 4 1-404H 4 #- -0 14-1 1- 11 4- Z4-I 1- 1 1 -

'~ Lc.UU) - U)W~W0 *a UI.JC a' 0o. I.>H I~tC .H ~ I W- I.

II

U I

0 co

.0 V 0
CC

inC2

0

00

u C
m AA

4c m

It It 04 Nr 0.

III 000.4I(U!0

II DEFINING DERIVATIVES.............................. 3-1

A. Defining the Derivatives as First-Order

Differential Equations. 3-2

B. Defining the Derivatives in User Variables 3-3

C. Defining the Derivatives as Engineering

Blocks (*BLOCK). 3-5

SECTION III

DEFINING DERIVATIVES

The most important segment of coding which the user must provide is

that which defines his derivative equations. This segment will be translated

by the precompiler into SUBROUTINE DERIVS which is then called as

needed by the ESP integration package for each evaluation of the derivatives.

The user, therefore, must code his equations in a manner that can be recog-

nized and properly interpreted by ESP. There are several ways to do this,

and the user can choose the one or more ways most suitable to his problem

from the following alternatives:

* The derivatives may be written as a set of first-order differential
equations in terms of the ESP variables Y(i), DY(i), and T.

* The derivatives may be written in terms of the user's variables
and their values then "moved" into the ESP array, DY. (This
option is particularly desirable- -frequently necessary--if
WHELP expressions are used to compute the derivatives.)

* The derivatives may be written as "BLOCK statements, which
permit direct and simple translation of engineering block diagrams
directly into code that ESP can interpret.

In any case, all derivatives must be defined within a section of coding

which begins with the card *DERIVS starting in column I and is terminated
with the card *ENDDERIVS, also starting in column 1. This section of coding
may be placed first, after any user supplied subroutines, or it may be placed

after the *ICCMP... -ENDIC or ',',UTPUT... 4ENDOUT sections. (See

Appendix A-3 User's Deck Structure.) In addition to the derivatives, this

section will contain any 'SWTCH or *;SWMEM cards used (See Section IV

Discontinuities.).

I

A. DEFINING THE DERIVATIVES AS FIRST-ORDER
DIFFERENTIAL EQUATIONS

SUBROUTINE DERIVS is written by ESP from the segment of the user's

coding beginning with the -:DERIVS card and ending with the -ENDDERIVS card.

It will receive from the integration package the value of the independent

variable T and the vector Y containing the values of each ith integral and must

return to it the vector DY containing the derivatives of each corresponding

Y(i). Therefore, certain points must be kept in mind in coding the derivative

equations:

* Each equation must be solved for some Y so that it can be
written in the form DY(i) = some expression, one DY(i) per
integrator required.

* The variable T is always the independent variable. (Its range of
values is specified on the *RUN card explained in Section VII-A.)

* Y(i) should always be assumed to represent the result of integra-
tion at the current value of T.

* DY(i) may appear on the right-hand side of an equation if it has
been defined above. [If derivative equations interlock, i.e.,
DY(1) = function of (DY(2)), DY(2) = function of (DY(l)), these
equations must be solved, either analytically or numerically to
remove the interdependency before trying to integrate.]

" Variables other than T, Y and DY which are used in the expres-
sions should be PAR's (see Section II-B, STEP 2-2), or
variables defined in some way within this program segment.

* The exact number of derivatives to be integrated must be indi-
cated on the .'-RUN card, explained in Section VII-A.

* To skip a derivative at any time, simply set DY(i) = 0, but make
certain that neq, specified on the -- RUN card, corresponds to the
largest subscript of DY used, even though it is desired to actually
integrate fewer derivatives.

The general form of the derivative equation coding is

DY(i) = some function of (T, Y, DY, PAR,

constants, user variables)

3-2

EXAMPLES:

1. 0 0 + 5.Ot =DY(1) = Y(1) + 5.0'T

2. Y +bY = G 1 (T-2. 0) DY(1) = -B-:-Y(1) + G1:-(T-2.0)

or DY(1) = -PAR(1)Y(1) + PAR (Z)-(T-2. 0)

3. f = 0 + 2.0(1 fDY() = Y(2) + 2. 0 *Y(1)

= 0. 5 + COS() J [DY(2) = 0. 54:DY(1) + COS(Y(2))

4. -+ Zw' + w2 Y = a + b cos (wlt) I

where a = 10., b = 3., w = 0.05, 4 = 0.5, w = 2.

I DY(1) = Y(2)

DY(2) = 10.0 + 3. 0*COS(0. 05*T)-2. *0. 5*2. 0;:Y(2)-4. 0;:Y(1)

B. DEFINING THE DERIVATIVES IN USER VARIABLES

Alternatively, the user may code his derivative equations using his own

variable names if he especially wishes to keep them more easily recognizable

or if he plans to use vector-matrix expressions coded in WHELP variables.

To do so, however, he must place within the derivative segment but before

the derivative equations, statements to move each integrator output (Y(i))

that he plans to use into his own variable location. Similarly, after his

equations, he must move the values to be integrated into the DY vector. This

may not be done with an EQUIVALENCE statement, because Y and DY are in

the calling sequence of SUBROUTINE DERIVS, and this would be a violation

of FORTRAN rules. It may be done using simple replacement statements or

SUBROUTINE MOVE, whose calling sequence is

CALL MOVE (A, N, B)

3-3

whe re

A is the first storage location from which data is to be moved.
It may be specified as A (i), A (i, j), A (i, j, k), or simply A
implying A(1, 1). Data will be transferred by columns.

N is the number of consecutively stored values tobe moved.

B is the first storage location to which data is to be moved,

specified in the same way as A.

EXAMPLES:

-DER IVS

I. 0 t + 0 THETA = Y(1)IOt- . 0 THETADT = Y(Z)
bO~t5.0)GAMMA = Y(3)

THTDTDT =GA MMA*T+THETAD T
GAMMADT PA (1*HTA(-5. 0)

DY(I) = THETADT
DY(Z) = THEDTDT
DY(3) = GAMMADT

-ENDDERIVS

*DERIVS

2. 2. 0~z - 3. 5*P DIMENSION PHI(3), PHIDOT(3)
C MOVE Ys INTO USER VARIABLES.

= ~ ~ ~ ~ CL M1 o ~ ~ ~ OVE (Y (2), 3, PHI)

i= T 2 T + sin (3 C COMPUTE DERIVATIVES.
ZDOT = 2.0 'Z - 3.5*'PH-I(l)

3= 3T+cos PHIDOT(l) =PHI(l)-* T + COS (PHI(2))
1 PHIDOT(2) = PHI(2)*T + SIN (PHI(3))

PHIDOT(3) = PHI(3)* T + COS (PHI(1))
C MOVE DERIVATIVES INTO DYS.

DY(l) = ZDOT
CALL MOVE (PHIDOT, 3, DY (2))

*ENDDERIVS

*DE RIVS
3. A(3,3), B(3), C(3 COMMON /USERB LK/A

C =A B-, IDECLARE A(3, 3) B(3) CDOT(3) $

CDOT = A--B $
C ALL MOVE (CDOT, 3, DY(1))

*ENDDERIVS

[Note on example 3: Refer to Appendix H on WHELP]

3-4

C. DEFINING THE DERIVATIVES AS ENGINEERING
BLOCKS (*BLOCK)

Since engineering systems are often described by block diagrams (as in

the example case, Section II-B) a special command card *BLOCK can be used

to define the integration represented by a block diagram so that the user need

not translate its contents into the form Y = some expression.

A block diagram of this form is commonly used to represent a first

order filter in an analog system:

e. - - y(i)..
e in s +W

It means simply that the output of the block equals the contents of the

block multiplied by the input, or in this case

y M) = in (I)

where 1/s represents an integrator. Solving this to remove the s, we get

in

or (s +.8) e
in

or

y(i) = e. - y(i)

in

This could now of course simply be coded as

DY(i) = e. - 8*y(i).
in

However, the whole process of manipulating the variables (and thus possibly

introducing errors) can be avoided by using the special format:

*BLOCK 1 y(i) ein $

3-5

where

1 denotes a first order block

p is a constant (which may be any legal FORTRAN expression)
written without embedded blanks

Y(i) is the dependent variable name for the output of the block

e. is a FORTPAN expression for the desired block input (It may
Ln have blanks within it, and is terminated by the dollar sign.

$ is the required terminator.

All items are separated by blanks.

Second-order blocks can also be specified directly by using *BLOCK 2.

Thus, a block of this form

e. as + a0 - Yi which is equivalent to

s + yIs + P0 Vi = lein + 0ein PI - P0Y.

can be coded in this format:

*BLOCK 2 a 1 o P P0 Y(i) Y(j) en $

whe r e

2 denotes a second-order block

a 1 a 0 , 1 P 0 are constants (which may be any legal FORTRAN
expressions) written without embedded blanks

Y(i) is the dependent variable name for the output of the
block

* Y(j) is another dependent variable name for an inter-
mediate variable [It will not be the derivative of Y(i)]

ei is a FORTRAN expression for the desired block input
(It may have blanks within it, and is terminated by the
dollar sign.

$ is the required terminator.

All items are separated by blanks.

3-6

NOTE

Variables used in 'BLOCK statements must follow the same
rules as those used in DY([) = ... statements since all *BLOCK
statements are translated by the precompile program into equi-
valent equations of the form DY(i) =

EXAMPLES:

1. Y(3)- - 1 -Y(4)s

":BLOCK 1 0.0 Y(4) Y(3) $

2. Y (2):PAR (7) s +I Y(3)

-BLOCK 1 OMEGA*Z Y(3) Y(2)*PAR(7) $

33.0o 2s +l 1 Y (2)

3. 3.+5.0s +A

",BLQCK 2 1.0 1.0 5.0 LAMBDA Y(2) Y(3) 3.0,:MEGA $

3

1 i
I.

IV. INTEGRATION PACKAGE.............................. 4-1

A. General Information. 4-1

1. Options. 4-1

2. Stepsize Selection. 4-2

3. User Control of Stepsize 4-2

4. Controlling Solution Accuracy. 4-3

B. Adams Integration 4-4

C. Runge-Kutta Integration. 4-6

1. Fixed Stepsize 4-6

2. Variable Stepsize. 4-6

3. Error Control 4-7

4. Inputting Values at Discrete Intervals. 4-7

D. Predictor-Cor rector Integration 4-9

1. Variable Stepsize. 4-9 z

2. Fixed Stepsize 4-10 G

3. Error Control 4-10
0
2

G)
nI

SECTION IV

INTEGRATION PACKAGE

A. GENERAL INFORMATION

The basic integration package provided by ESP uses an algorithm known

as Adams integration, which combines variable stepsize with variable order

integration to provide a highly flexible and efficient problem solving capa-

bility. Three alternative integration packages are also available and may be

selected at the user's discretion: they are fourth-order Runge-Kutta, second-

order Runge-Kutta, and Hamming fifth-order Predictor-Corrector (which

uses fourth-order Runge-Kutta as a starter). Each of these alternative

integrators may be used with either a fixed or variable stepsize. (An expla-

nation of the various algorithms used may be found in Appendix E.)

1. Options

Adams integration will be used unless overridden by the user. To

select one of the alternative packages, simply place the following card before

all others in your deck:

--METHOD name

whe re

*METHOD begins in column 1

name is RK4 for fourth-order Runge-Kutta

or RK2 for second-order Runge-Kutta

or PC for Predictor-Corrector

[See Appendix D-3-b if you write your own MAIN program.]

The Adams integration package seems to be highly successful with a

great variety of problems and therefore should be tried first for most prob-

lems. Problems which require inputs at discrete intervals, however, may be

more suitable for Runge-Kutta integration (see Section IV-C-4).

41

4- 1

<N

No matter which integration algorithm is used, control of integration is

maintained by SUBROUTINE ESPCTL. It computes the initial stepsize (if

variable), calls the specified integration routine, calls the switching routines,

checks for occurrence of switches, and handles printing and storage of plot

data.

2. Stepsize Selection

Immediately after the first call to SUBROUTINE DERIVS, ESPCTL will

determine the initial H in one of the following ways:

* If both Y. and Y. are nonzero, then
I i

0 If either Y. or Y. is zero for all i, theni I

H TF - TO
512

* The user may define H in ICCOMP, and this H will be tried
first (see below).

The user may select fixed stepsize integration (with RK2, RK4,or PC only) by setting FIXSTP > 0 (see below).

After initial stepsize selection, stepsize control proceeds differently in

each integration package and is documented in the description of each method

given below.

3. User Control of Stepsize

In order to change any of the stepsize variables, the user should place

* the following common block in ICCOMP and use arithmetic statements to

define those variables he wishes to change:

COMMON/STPCON/HP, H, FIXSTP, HMIN, HMAX

4-2

where

HP is the current printing interval. This is normally changed
from the *.RUN card but may be changed by the user's
program during the run and must be > 0.

H will be the initial stepsize tried, and the current stepsize
during execution. It may be set only in ICCOMP or at
switching times and must satisfy HMIN - H < HMAX.

FIXSTP (default = 0) if set > 0, causes H = FIXSTP at all times.

HMIN (default = 0) the lower limit on the stepsize. HMIN > 0
causes printing of a warning message and continuation of
integration with acceptance of errors whenever H < 2.0 X
1-IMIN.

HMAX (default = 1. 0E50) the maximum stepsize permitted.

4. Controlling Solution Accuracy

Solution accuracy may be controlled by the user through either or both

of two variables, which may be input on run-time data cards. The exact use

of these variables depends upon the integration algorithm selected and is

explained in the discussion of each given below. The cards should be placed

after all derivative, input, and output coding but before the *RUN card. The

formats are:

*EPS

Q q, qZ ... qn

where

Default value of f = 1.E - 6

Default value of qi= I.E - 10

*EPS and *Q start in column 1

qi can be either = a constant alone (assumed to be control for
next variable)

or Qi = constant

or ALL = constant

$ is a required terminator for -Q

4-3

EXAMPLES:

*EPS I.E-Z

2Q Q2 = I.E-20 1.E-8 Q5 = l.E5 $

*Q ALL = I.E-6 $

B. ADAMS INTEGRATION

The Adams integration package features both variable stepsize and

variable order integration. Since it is able to dynamically adjust both the

stepsize and the order according to the success of each integration step, it is

capable of solving a wide diversity of problems with both accuracy and speed.

On the first call to ADAMS, an appropriate stepsize H is computed

using the H supplied by ESPCTL as a starting point, a flag IFAIL is set to 0,

the order K is set to 1, and all necessary coefficients of formulas are

initialized and computed. On subsequent calls, IFAIL is reset to 0 and H

retains the value assigned in the previous call and is merely tested to ensure

that it is within the precision limits of the computer. Coefficients needed for

integration are then recomputed only if H has changed.

From this point on, the sequence of events is the same for each call to

ADAMS. A solution is predicted and DERIVS is called to evaluate the deriva-

tives at the predicted solution. The local error is estimated at order K, K-i,
and K-2, and if necessary the order is lowered for the next step.

If the errors are within an acceptable range, the step is considered

successful, the predicted solution is corrected and the derivatives re-evaluated

at T + H. Differences are updated for the next step, and the best order and

stepsize are determined for the next step before control is returned to ESPCTL.

If the errors are not acceptable, T is reset to T-H, the flag IFAIL is

incremented by 1 and then tested. On the first and second failures, H is

halved and the order retained before retrying integration; on the third failure,

4-4

r

the order K is also reduced to 1. If more than three failures occur, an

optimum H is also computed before retrying. Again the size of H is tested,

and if too-small for machine precision, the error tolerance is doubled, and

KFLAG is set to 0 so that a warning message will be printed:

"REQUESTED ACCURACY NOT ACHIEVED AT T =

REMAINDER OF SOLUTION IS SUSPECT."

The error control method of ADAMS utilizes both stepsize and order

variation to keep

11/

where

E. = estimate of the error in Y. mode in the current step1 1

Q. = maximum thus far of Q. and JYJ (updated at the end of each
1 1integration step)

i:i !(See Ref. 6.)

4-5

C. RUNGE-KUTTA INTEGRATION

Both fourth-order Runge-Kutta and second-order Runge may be used

with either a fixed stepsize or a variable stepsize. Each is implemented in

its own subroutine, but these routines are parallel in logic and sequence, and

differ only in the integration equations and constants used. The following

paragraphs refer to fourth-order Runge-Kutta with differences applying to

second-order Runge-Kutta noted in parentheses.

1. Fixed Stepsize

If the variable FIXSTP is set > 0 by the user (see Section IV-A-3), the

stepsize H = FIXSTP at all times, and no error testing of any kind is done.

Each call to the integration routine causes two single integration steps, namely

from T to T+H and from T+H to T+2H.

2. Variable Stepsize

If FIXSTP <0 (default is 0.), integration begins with the stepsize H as

determined in ESPCTL. A double step is taken, from T to T+2H, and then

two single steps are taken, from T to T+H and from T+H to T+2H. The total

error is computed and compared with the permitted error bounds. If not

acceptable, stepsize doubling is prevented and H is compared with HMIN to

determine if the stepsize can be halved. If not, integration continues using

the current H and a warning message is printed:

"REQUESTED ACCURACY NOT ACHIEVED AT T =

REMAINDER OF SOLUTION IS SUSPECT."

If H can be halved, it is and the above process is repeated.

If the errors are within acceptable limits, they are further tested. If

less than 0. 5% (1% for RK2) of the error bounds, the stepsize H is permitted

to double for the next integration step.

4-6

4-6

3. Error Control

The error allowed in the computation of Y(i)s is controlled by requiring

that

neq 2
EPS [ERRWR(i)

Q=1

and Q(I) is initially set to MAX(Q(I), I YO(I)J) and then continuously updated to

Q(I) = MAX(Q(I), IY(I)I , I Y(I) I)
(T=T-H)

The default value of EPS is 1. E-6 and of Q(I) is i.E-10, but the user

may change them to suit his problem. (See Section IV-A-4.)

4. Inputting Values at Discrete Intervals

Since the user sometimes wishes to input noise or compute values at

discrete and predictable intervals during integration and because the number

of evaluations of the derivatives is different for each integration routine, a

special flag, FIRSTP, which signals the beginning of each integration step

(or pair of steps) has been added. To use this flag, include the following card

in the derivative segment of coudig

I OMMON/RKCNT /FIRST P

and ,.st FIRSTP to determine when to input values. FIRSTP = 0. normally,

but is set to 1.0 by the integration routine at the beginning of each step in the

fixed step mode or at the beginning of each pair of steps in the variable stepK" mode.

4-7

'iA

Simulations with noise may be easily set up by using *METHOD RK4 or

RK2, setting FIXSTP 0 0. (See Section IV-A-3) and inputting a noise value

whenever FIRSTP = 1.0 (See the example below.).

Alternatively, the automatic stepsize control feature can be retained

and a crude kind of switching capability achieved by using *METHOD RK4

or RK2 with a variable stepsize and simply testing the FIRSTP flag (as shown

in the example below). This will permit successful introduction of discrete

or discontinuous values at the beginning of each integration step, irrespective

of the step size.

EXAMPLE:

,-METHOD RK4

*DERIVS

COMMON/ RKCONT /FIRST P

IF (FIRSTP .NE 1) GO TO 5

ANOISE = RANF(0)

Y(1) = Y(1) + ANOISE

5 CONTINUE

DY(1) = ...

*ENDDERIVS

*ICC 0MP

COMMON/STPCON/HP, H, FIXSTP, HMIN, HMAX

FIXSTP = 0.02

'E NDIC

4-8

-S

D. PREDICTOR-CORRECTOR INTEGRATION

Hamming's fifth-order Predictor-Corrector is the algorithm used, but

since it is not self-starting, fourth-order Runge-Kutta is used to start the

solution at T and to restart the solution after discontinuities or difficulties
0

are encountered.

Using the stepsize H as determined in ESPCTL, steps 1-3 are taken

with fourth-order Runge-Kutta and the errors are checked at T 1 . If the error

on this step exceeds the error bounds, the stepsize is halved and the solution

is restarted from T O . If the error is acceptable, step 4 is taken with Runge-

Kutta and step 5 with Predictor-Corrector.

2 3

1 5

Fig. 1. Step Sequence for Starting Procedure

1. Variable Stepsize

Once the solution has been started in this way, error checks are made

continuously, and the stepsize is halved when the error exceeds the bounds

and permitted to double for the ne't step when the error is less than 1% of

the bounds. To prevent excessive interval halving if the problem happens to

be ill-conditioned, a counter is used to monitor stepsize halvings. Each time

the solution is restarted with Runge-Kutta, the counter (KCOUNT) is started

at zero. Each time the stepsize is decreased, KC)UNT is decreased by one,

and after each successful step it is increased by one, but never permitted to

exceed zero. If KCOUNT becomes less than -4, a warning message is printed:

"SOLUTION APPEARS ILL-CONDITIONED AND IS BEING RESTARTED. THE

4-9

FOLLOWING Y'S EXCEED THE ERROR BOUND", followed by the Y(I)s. T is

reset to T-H, and the solution is restarted using Runge-Kutta.

The above description of stepsize and error control assumes that the

variable HMIN has its default value of zero. If, however, HMIN is set

greater than zero (See Section IV-A-3) and the error is too large, the step-

size H is halved if possible and the solution continued. But, if it cannot be

halved without making it less than HMIN, it retains its value, the solution

continues and a warning message is printed: "REQUESTED ACCURACY NOT

ACHIEVED AT T =___, REMAINDER OF SOLUTION IS SUSPECT." This

option, it may be seen, may produce less accuracy but in some cases more

speed. The user is advised to consider any warning messages he receives

and to base his selection of HMIN on the nature of his problem and the desired

results.

2. Fixed Stepsize

Although the Predictor-Corrector integration package is intended for

use as a variable stepsize method, it can also be used with a fixed stepsize by

setting FIXSTP >0. (See Section IV-A-3.). In this case, all error checking

is skipped and no interval halving or doubling occurs.

3. Error Control

The error allowed in the computation of Y(i)s is controlled by requiring

that

EPS > IERRR(I)I for all I
Q(I)

and Q(I) is initially set to MAX(Q(I), YO(I)j) and then continuously updated to

Q(I) = MAX(Q(I), IY(I)I)

The default value of EPS is I.E-6 and of Q(I) is I.E-10, but the user

may change them to suit his problem (See Section IV-A-4).

4-10

V. DISCONTINUITIES 5-1

A. Detecting a Sign Change (*SWTCH) 5-2

B. Hysteresis Nonlinearities (*SWMEM) 5-5

1. Defining Input to a SWMEM 5-6

2. Defining Output of a SWMEM 5-7

3. Defining the Characteristics of a SWMEM 5-7

4. Initializing a SWMEM 5-10

C. Locating Events which Do Not Affect Integration 5-10

D. SWTCH's and SWMEM's: Extended Usage 5-12

1. Alternate Ways to Define SWTCH and
SWMEM Inputs 5-12

a. User-Written Functions 5-12

b. User-Written SWINPT and SWMEMN 5-14

2. User-Computed SWTCH and SWMEM Output .. 5-14

E. How the Switches Work 5-15

F. Controlling Timing Accuracy of Discontinuities
(*HSW, *HSWM, and *HSWE) 5-18

a

I

L g

SECTION V

DISCONTINUITIES

In programming a system of differential equations, the need frequently

arises for a means to model accurately various types of discontinuities and

nonlinearities which are part of the system. Therefore, several special

features have been built into ESP to handle the most common types of non-

linearities, and with the aid of a little imagination (some examples will be

given) nearly any desired characteristic can be produced by modifying one of

the features.

It is important to understand that these features are provided not merely

for convenience, however! Since the integration algorithms available with

ESP by and large assume that they are working on continuous and reasonably

well-behaved derivatives, haphazard introduction of discontinuities by the

user can cause enormous problems and errors. The user is strongly urged

to be certain that discontinuities are introduced only by means of one of the

devices documented below and that the constraints mentioned with regard to

their use be closely observed. (Section IV-C-4 discusses one other method

of introducing discontinuities, which may be used with Runge-Kutta integra-

tion.)

These special features, which may be used only in the -"-DERIVS seg-

ment, consist of SWTCH's, which detect sign changes in an expression and

restart integration, SWMEM's, which represent hysteresis nonlinearities

and also restart integration, and an EVENT locator, which detects and reports

the occurrence and timing of any user-specified event but which does not

affect the integration process. Basic use of these features, which is fairly

straightforward, will be documented first, and the later part of this section

will be devoted to extended usage, a description of how the switches work,

and some details and considerations regarding timing and accuracy.

5

5-1

A. DETECTING A SIGN CHANGE (*SWTCH)

The "'-SWTCH command detects a change of sign in its control or input

expression, locates the time of this change within a specified degree of accu-

racy (see Section V-F), assigns itself an output according to the sign of the

input expression, produces an automatic print point at the switch time (which

the user may suppress), and restarts the integration from the switch time.

It is useful, therefore, in producing an accurate discontinuous driving func-

tion to a derivative equation and in permitting the user to detect the exact

time of a switch and, if he wishes, to perform some specific act at that time.

Other possible uses will be illustrated in the examples.

The general form of the 'SWTCH command is

*SWTCH i 0 $ 0 $ control expression. $0+

whe re

*SWTCH starts in column 1

i (1 < i -5 50) is the number of this switch

0+ is any legal FORTRAN expression which will be the output if
the control expression > 0.

0 is any legal FORTRAN expression, which will be the output if
the control expression 5 0.

control expression, is any legal FORTRAN expression involving
only T, Y, PAR, system functions and constants.
(For use of other variables, see Section V-D-1.)

* $ is a required terminator of the 0+, 0-, and control expressions

The ESP precompiler breaks up the *SWTCH card coding into the input

(control expression), which it writes as part of SUBROUTINE SWINPT in the

form VALUES(i) = control expressioni , and the output computation which it

writes as part of SUBROUTINE DERIVS.

5-2

I

There are two output variables available to the user resulting from

the *SWTCH statement. The first, SWCHi, is available only in the deriva-

tive segment of coding. To use it elsewhere, such as in OUTPUT, the user

must compute it himself (see Section V-D-2). The second, SWTCH(i), is

available in DERIVS, OUTPUT, SWINPT, SWMEMN and in any other routine

in which the common block SWTCHS appears. The variables contain the fol-

lowing information:

SWCHi 0+ if control expression. > 0.

0- if control expression. _ 0.

SWTCH(i) where: JSWTCH(i)J is one larger than the number of sign
changes made thus far by the control expression,
and is normally a floating point integer

The sign of SWTCH(i) is the current sign of the
control expression

SWTCH(i) serves as a signal to the user that a
switch has just occurred: On the first call to
DERIVS following a switching, each SWTCH(i)
which has been toggled has its absolute value
increased by 1. 5. See example 2 below for a
way to utilize this trait, and see Section V-E for
detail on the exact sequence of events when a
switch occurs.

EXAMPLES:

1. The example problem in Section II shows a typical use of *SWTCH:

I -I--1.0
Input lOut put

This is coded as

*SWTCH 1 1.0 $ 0.0 $ Input $

5-3

_L

which produces the following results:

If input <50., SWCHI = 0., SWTCH(1) = - N (N =number of sign
changes + 1)

If input >0., SWCH1 = 1.0, SWTCH(1) = + N

Also, when the switch is detected and located within HSW(I) of the

time it occurs, then

SWCH1I = 0., if input -5 0.

= I., if input >0.

and SWTCH(l) = SIGN(INI + 1.5, Input)

In this example, SWCHI is the relevant output and is used as a term

in th" expression for DY(l)

DY() = Gl'-SWCH1 - B*Y(l)

2. To detect the exact time at which subroutines are to be called to re-
define a number of program constants, the following arrangement
could be used. Notice that no value is assigned to SWCHl because
the output variable of interest here is SWTCH(i), and that the coding
makes use of the fact that SWTCH(i)'s are nonintegers exactly at
switch times.

(assume PAR(l) = time1 , PAR(Z) =time., etc.)

*SWTCH 1 0. $ 0. $ T-PAR(1) $
IF(SWTCH() .NE. AINT(SWTCH(1)))CALLDUMDUMI

*SWTCH 2 0. $ 0. $ T-PAR(Z) $
IF(SWTCH(Z) . NE. AINT(SWTCH(2)))CALL DUMDUM2

3. To produce a sample and hold at times tl,t 2 , t 3 , 3.. a similar but more
abbreviated setup can be used, employing only one switch which will
detect a sign change as each successive time is reached. Dimension
a vector TSAMP of length N and store the desired sample times T.,
T 2 ,.TNinto it. Initialize SAMPLE, PAR(3) = tI and I = 1 and
then use the following coding:

*SWTCH 4 0. $ 0. $ T-PAR(3) $

IF(SWTCH(4) .EQ. AINT(SWTCH(4))) GO TO 5

C (THIS SECTION WILL BE EXECUTED ONLY AT SWITCH TIMES.)

* SAMPLE =

PAR(3) = TSAMP(I)

5 CONTINUE

5-4b

In this example it is assumed that t0 < t I < t 2 ... < t . As execution

begins, this switch is first toggled when t equals t 1 and at that time

SWTCH(4) has 1. 5 added to it so that the IF test will fail. Thus, SAMPLE

is computed and PAR(3) is reset to the next sample time. Since immediately

after this the . 5 is stripped from SWTCH(4) this coding will be then bypassed

until t reaches the new value of PAR(3). Note that this represents one of the

few cases in which it is permissible to store a time-dependent value in PAR

and to change the input to a switch in a discontinuous manner.

B. HYSTERESIS NONLINEARITIES (*SWMEM)

A hysteresis nonlinearity, of the general type illustrated in Fig. 2,

can be modeled using the *SWMEM cards explained below.

OUTPUT

INPUT

Fig. 2. General Form of SWMEM Nonlinearity

It will determine the proper location and output of the hysteresis within the

required accuracy (see Section V-F), inform the user by setting a flag when-

ever a discontinuity occurs, indicate whether the output is in the linear, dead-

band or saturation regions, and restart the integration at each discontinuity.

5-5

There are three special control cards which may be used to implement

this option:

"'SWMEM (required) defines input to a SWMEM.

*SWMEMDATA (optional) defines the characteristics of the SWMEM.

:"SWMEMSET (optional) initializes in saturation instead of at zero.

1. Defining Input to a SWMEM

The input to the hysteresis is defined on the *SWMEM card which is

placed in the derivative segment of coding. The ESP precompiler will write

the input as part of SUBROUTINE SWMEMN in the form VALUES(i) - input..1
The format is

I -SWMEM i input i $

whe re

*SWMEM starts in column 1

i (1 < i !5 50) is the number of this SWMEM

input, is any legal FORTRAN expression involving only the variablesT, Y, PAR, system functions and constants. (See Section

V-D-1 if other variables must be used.)

$ is a required terminator

EXAMPLES:

*SWMEM 1 Y(1) + Y(Z) - COS(PAR(IZ)*T) $

SWMEM 16 Y(3);'*Z - PAR(1)*T/2. 0 $

5-6

2. Defining Output of a SWMEM

There are two separate output variables from SWMEM's, parallel in

nature to those from SWTCH's. The first, SWMi, is automatically com-

puted and made available to the user in the derivative segment. To use it

elsewhere, the user must compute it himself (refer to Section V-D-2). The

second output variable, SWMEM(i, 4), is available in any routine where the

common block SWTCHES appears. The variables contain the following

information:

SWMi is the actual output value of the i t h SWMEM

SWMEM(i, 4) is normally a floating point integer indicating the
present position on the hysteresis by its value:

-2. 0 indicates negative saturation
-1.0 indicates slope on negative side) '

0. 0 indicates deadband
1. 0 indicates slope on positive side**
2. 0 indicates positive saturation

SWMEM(i, 4) also signals the user that a "corner has
just been turned" on the hysteresis: On the first call
to DERIVS following a SWMEM discontinuity, the
absolute value of each SWMEM(i, 4) which has changed
state is increased by 0. 5. After the derivative equa-
tions are evaluated, the SWTCH's and SWMEM's are
reevaluated and the 0. 5 removed before the integration
is restarted. (This signal may be tested and used in the
same ways that SWTCH(i)'s are used in the examples
(refer to Section V-E for more detail on the exact
sequence of events.)

3. Defining the Characteristics of a SWMEM

Generally the user will want to define the constants Cl through CIO

(see Fig. 3) characterizing his SWMEM, although they do have default values

for the simplest case. Constants C3, C4, C8, and C9 are the slopes. How-

ever, an infinite slope is defined by setting the corresponding C1 equal to zero.zi

**If the user wishes to know what path he is following on the hysteresis, he

may store the past value of SWMEM(i, 4) so he will know where he is
coming from at each "corner."

5-7

* *n. -- -

OUTPUT C5

C C4

CT C6 ___________ __

CI C2 INPUT

Co 9

- CIO

Fig. 3. SWMEM Characteristics

The C's are usually defined as part of the run-time data cards,

meaning that they are placed somewhere between *ENDIC (if used) and
*RUN, and are picked up in the same way that PAR's are picked up from

*PAR cards. The format for inputting C's is

:-SWMEMDATA

i c1 c2 ... C $1 11t

i2 c 1 c 2 C 0 $

whe re

*SWMEMDATA starts in column 1

i is the number of the corresponding SWMEM

C. is either a constant alone or Cj = constant, and blanks are
cj separators. If a constant appears alone, it is assumed to

be the value of the next c*. If no value is given for ci, its
default value will be use 1 .

$ is a required terminator

5-8

In general CI must be > C6, except for special case I below.

Default values are C5 = 1, CIO = -1, all other Cs = 0., giving

Output

1.0

Input

-1.0

SPECIAL CASES:

1. C1 = C2 = C6 C7 is permitted, giving something like this:

Z. For a symmetric nonlinearity (corresponding to forming quadrant III
by rotating quadrant I through 180 degrees about the origin), only C1
through C5 need be defined with the result that

C6 = -Cl C9 = C4

C7 = -CZ C8 = C3

CIO = -C5

3. If it is necessary to compute any of the C values, they may be defined
as CONSTS in ICCOMP, if the following common block is added:

COMM N/SWHPAR/NCHNG, NALTER, ISWTYP, KSV,

CONSTS(50, 10), SWSET(50)

C values defined in ICCOMP will supersede any that are input on

*SWMEMDATA cards, but no error check will be made on them.

5-9

4. Initializing a SWMEM

Normally, the function is initialized on the region corresponding to

starting from zero, but it may be initialized on the region corresponding to

starting from saturation by using the *SWMEMSET card among the run-time

cards. The format is

*SWMEMSET n1 n 2 ... n $

where

'SWMEMSET starts in column 1

n. is the number of the *SWMEM to be set and blanks are separators3

$ is a required terminator of the list

The n. are not retained from run to run, so it is necessary to redefine them3

for different runs.

C. LOCATING EVENTS WHICH DO NOT AFFECT INTEGRATION

The EVENT capability is useful for finding events which do not intro-

duce discontinuities into the differential equations. It detects the time of

occurrence of any event specified in the user-written SUBROUTINE EVENTS

within the timing accuracy specified on the *HSWE card (see Section V-F).

The event is recognized as a change of sign in the input or event-defining

expression, and any event can therefore occur many times within a run.

Having located an event, ESP then interpolates T and Y to the event time and

calls the user-supplied SUBROUTINE NOTIFY, as its only response to the

event. It does no printout and it does not in any way affect the integration

process or the rest of the run.

5-10

* t

To use the EVENT locator, three things must be done:

9 Place an '*NEVENT card among the run-time data cards:

*,NEVENT n]I

where

*NEVENT starts in column 1

n is the number of events to be defined

e Supply the subroutine to define the functions which determine the
events:

SUBROUTINE EVENTS(VALUES, T, Y)
DIMENSION VALUES (I), Y(1)

[Other common and dimension statements as needed]

VALUES(1) = expression determining event 1

VALUES(n) expression determining event
RETURN n
END

* Supply the subroutine to receive notification that event number IEVENT
has occurred at the given values of T and Y. This routine will be
called once for each event occurrence, in the order in which events
occur. Its format is:

SUBROUTINE NOTIFY(T, Y, IEVENT)
DIMENSION Y(1)

[Other common and dimension statements as needed]

[Statements defining how EVENT information is to be used]

RETURN
END

EXAMPLE:

SUBROUTINE NOTIFY(T, Y, IEVENT)
DIMENSION Y(1)
PRINT 100, IEVENT, T

100 FORMAT(1H0, *EVENT*, 14, *OCCURRED AT*, E8. 2)
RETURN
END

5-11

'I, 1

D. SWTCH's and SWMEM's: EXTENDED USAGE

Frequently the standard usage of SWTCH's and SWMEM's is too con-

fining for the user's needs, either because of the limitations on how inputs

may be defined or because the desired output values are not automatically

available in all routines. The following paragraphs illustrate several ways

that these limitations on both input and output can be circumvented.

1. Alternate Ways to Define SWTCH and SWMEM Inputs

Basic usage of -:-SWTCH and *:SWMEM limits the form of their inputs to

simple FORTRAN expressions using T, Y, PAR, system functions and

constants only, because of the way these statements are translated by the

precompiler into the input routines SWINPT and SWMEMN. Since it is

sometimes necessary either to use other variables or to execute a series of

statements to define a switch input, alternate means of defining switch inputs

are available. The first, and probably simplest, is for the user to write

a function subprogram which defines his input; the second is to simply write

the entire SWINPT or SWMEMN routine himself. In either case the user

should remember that T and Y are always updated for the purpose of com-

puting switch inputs, and that any time-dependent variables used to compute

switch inputs should themselves be compute(' within the function subprogram

or within the user-written SWINPT (SWMEMN) so they too will be properly

updated.

a. User-Written Functions

The major advantage in using function subprograms to define switch

inputs is that it permits the user to combine the convenience of the

"SWTCH(',SWMEM) card with almost total flexibility in defining his input.

He may use common blocks to pass his own variables to the switch input

computation, and he may use as many FORTRAN statements as he wishes to

define his actual input. The following example illustrates some possibilities

of this approach-

5
5-12

EXAMPLE:

If the switch input is

if Ki = 1, input = Y(3) 10. -,:BETA
if KI = 0, input =Y(3) '."BETA + Y(2)

and the desired output is

if input > 0, output = 1. 0
if input :5 0, output = 0. 0

the switch can be coded by putting the following cards in the derivative
section

COMMON/BLOCK1 /Kl, BETA

-SWTCH 1 1.0 $ 0.0 $ SWFUNC(Y) $

and writing the following function subprogram to be placed before the
derivative coding

FUNCTION SWFUNC(Y)
COMMON/BLOCKl/K1, BETA
DIMENSION Y(1)
IF (KI . EQ. 0) GO TO 5
SWFUNC = Y(3) *10. *BETA
RETURN

5 CONTINUE
SWFUNC =Y(3) *BETA + Y(2)
RET UR N
END

5-13

b. User-Written SWINPT and SWMEMN

If the user has many switch inputs which require extensive computa-

tion, he may prefer to simply write his own input routines rather than write

many functions. As with the function subprograms, any number of common

blocks and computations may be included when the user writes his own sub-

routines SWINPT or SWMEMN. He must, however, write these routines in

the form in which ESP expects them, as explained below, and be careful to

place them after his job control cards but before the *DERIVS segment,

which will result in their being used instead of the dummy routines written by

the precompiler. Either routine or both may be user-written, but if the user

writes his own routine for SWTCH inputs (SWMEM inputs), he must define all

of his SWTCH inputs (SWMEM inputs) within it. Since his routine will sup-

plant that written by PRECOMP, the effect of any input expressions coded only

on -SWTCH (*SWMEM) cards will be lost. The procedure for writing SWINPT

and SWMEMN is almost identical and is outlined in the following steps:

* Place the card, -:SWITCHES n, (*SWMEMCNT n) where n is the
number of SWTCH's (SWMEM's) being used, among the run-time
data cards.

* Write the first four cards of SUBROUTINE SWINPT
(SUBROUTINE SWMEMN), normally written by the pre-
compiler, exactly as they appear in Appendix D-3-b.

* Include any common blocks, dimension statements, function
definitions, and computations needed to define the switch input
expressions.

* Define each of the SWTCH (SWMEM) inputs in the form

VALUES(i) = input expression.1

* Conclude the subroutines by writing the cards RETURN and END.

2. User-Computed SWTCH and SWMEM Output

The switch output variables SWTCH(i) and SWMEM(i,,j) are passed in

the common block SWTCHS to those segments of the coding translated by

the precompiler. Therefore, they are available at any time within the

5-14

subroutines DERIVS, OUTPUT, SWINPT, and SWMEMN. SWCHi and SWMi,

however, are computed only within the derivative segment and appear there

only if -:-SWTCH and *SWMEM statements have been included. [If e-SWTCH

(*SWMEM) cards are used in addition to user-written SWINPT (SWMEMN),

PRECOMP will correctly write the coding into DERIVS to define SWCHi

(SWMi), even though the input expressions will be lost.] There are situations,

therefore, in which the user may have to use SWTCH(i) and SWMEM(i,j) to

compute SWCHi and SWMi himself: the first is during routine usage of

*SWTCH or *SWMEM when the user wants to compute SWCHi or SWMi to use

outside of DERIVS, and the second is when he has written his own switch

input routines, uses no *SWTCH or '"SWMEM cards, and wants to use these

variables anywhere.

SWCHi can be computed in any routine which contains the common

block SWTCHS by including the statements

IF (SWTCH(i).GT. 0) SWCHi = some expression

IF (SWTCH(i) . LE. 0) SWCHi = some expression

SWMi can also be computed in any routine containing the common block

SWTCHS by using the expression

SWMi = SW1MEM(i, 3)-SWMEM(i, 2)*(SWMEM(i, 1)-input)[

E. HOW THE SWITCHES WORK

If switches of any form, SWTCH, SWMEM, or EVENTS, are used in

an ESP program, their inputs are processed regularly after the completion

of successful integration steps to see if any switches have occurred. To

minimize the calculations required to do this, the inputs are all defined in

the separate routines- -SWINPT, SWMEMN, and EVENTS--so that only

these routines (and not DERIVS) need to be called to check the inputs. To

detect switches and find the zero crossings, one past value of the input is

always saved.

5-15

Once a switching has been detected, a modified version of Wilkinson's

method (Ref. 2) is used to find the time of switching. If neither the saved

value nor the present value of the input is zero, linear interpolation is used

four successive times, testing for convergence each time. If convergence

has not been accomplished after four iterations, a bisection is performed,

and the linear interpolation is repeated in sequences of four plus a bisection

until convergence is achieved. The condition for convergence is that the

zero crossing be found within an interval of time (see the explanation of the

*HSW, *HSWM, and *HSWE cards, Section V-F).

After determination of the first switching (if more than one occurred

in the interval T - H to T), all switches which would switch within the

accuracy requirements of the first are allowed to do so; then the solution is

restarted. The sequence is as follows:

1. The zero crossing is found.

2.. NOTIFY is called if EVENTS is used and any have occurred.

3. Printing is done at any print intervals prior to the switch time.

4. Variables to be used in restarting the integration are recomputed
at the switch time.

5. If NDISPR = Z, the output data prior to the switching (that is,
the data at the switch time but before the effect of the switch has
been computed) is plotted and printed.

6. SWTCH(i)'s and SWMEM(i, 4)'s are set to the proper signs and
values and 0. 5 is added to those that have switched.

7. DERIVS is called to evaluate the derivatives with the 0. 5 flags
on the switch outputs (see Sections V-A and V-B-2).

8. All SWTCH and SWMEM inputs are reevaluated and their outputs

updated in case one switch has toggled another.

9. EVENTS inputs are reevaluated if used.

7 10. The O. 5's are stripped from the switch outputs.

11. DERIVS is called to evaluate the derivatives without the 0.5's
on the switch outputs.

5-16

.-. 5-.

12. Plot data is stored and if NDISPR 0 0, print occurs.

13. Integration is restarted from the switch time. (See flow charts
of ESPCTL in Appendix D-4-c-iii.).

If another switch occurred later in the same integration interval, it

will be detected after the next successful integration step, and the above

procedure will be repeated.

This sequence of events has several important implications for pro-

grams in which two or more SWTCH's or SWMEM's occur in series:

0 Two SWTCH's in a series (i. e., the first triggers the second) will
produce the correct output for the second SWTCH in the second
call to DERIVS. Also, SWTCH(i) will contain an accurate
count of the actual number of switchings to date, but no flag
will appear on the second SWTCH(i). Thus the "IF (SWTCH(i)
. EQ. AINT(SWTCH(i)))... " test will not work for the second
switch.

* Two SWMEM's in a series (i.e., the first triggers the second) will
also produce the correct output for the second SWMEM in the
second call to DERIVS. On both the first and second calls to
DERIVS, the integer value of SWMEM(i, 4) will accurately indi-
cate the position on the hysteresis. However, no flag will ap-
pear on the second SWMEM and, like the second SWTCH(i), the
user will not be able to test for it.

* More than two SWTCH's or SWMEM's in a series will result in
the first two being detected as above, and the next two being
detected and reported some HSW or HSWM interval later, and
so on.

The amount and accuracy of print and plot data in the neighbor-
hood of switches may be controlled by use of the flag NDISPR:

NDISPR = 0 Plot data is stored at end of switch
sequence, but no print occurs at the
switch time unless it happens to coincide
with a print time.

I Plot data is stored and print occurs at

the end of the switch sequence.

2 Plot data and print data are stored at the
switch time both before the effect of the
switch is calculated and afterward.

5-17

The default value of NDISPR is I. To change this the user must include

COMMON/NDISPR /NDISPR

in his program (preferably in ICCOMP) and set NDISPR to the appropriate

value.

F. CONTROLLING TIMING ACCURACY OF DISCONTINUITIES
(*HSW,)-HSWM, AND *HSWE)

There are three special control cards for controlling the allowable

timing error in determining SWTCH's, SWMEM's, and EVENT's. All are

optional and if used are placed among the run-time data cards, that is after

*ICCOMP... *ENDIC and before *RUN, in any order. Their formats are

*HSW h h ... h $

*HSWM h1 h hn $

*HSWE hl h 2 ... h $

n

where

Default values of all hi = IE - 6

*HSW (*HSWM, *HSWE) starts in column 1
h. can be a constant alone

1 Hi = constant

ALL = constant

(If a constant appears alone, it is assumed to be the
control for the next SWTCH, SWMEM, or EVENT.)

$ is a required terminator

5-18

EXAMPLES:

*HSW ALL=1.E-lO

produces:

all HSW(i) = i.E-10

*HSWM Hl=1. E-Z H3=1. E-lO $
produces:

HSWM(1)=l1. E -2

HSWM(2)1I. E-6 [default]

HSWM(3)=l1. E -10

any additional HSWM(i)=l. E-6 [default]

*'HSWE H2=1. E-20 1. E-31 Hb=l. E-lO $
produces:

HSWE(2)=1. E-20

HSWE(3)=1. E-3

HSWE(6)=1. E-10

HSWE(1)=HSWE (4)=HSWE(5)=any additional
HSWE(i)=1. E-6 [default]

5-19

V. OUTPUT. 6-1

A. Printed Output: Automatic Formatting 6-1

1. Printing ESP Variables (*--PRINT). 6-1

2. Printing User Variables or Computing Output
(,,"UTPUT. . .,'"ENDOUT) 6-3

3. Accuracy of Printed Values. 6-4

B. Graphic Output 6-5

1. Storing Plot Data 6-6

92. Plotting Output (:'GRAPH) 6-7

C. Printed Output: User Formatted 6-11

D. Data File Output 6-13

1. Data Written onto TAPEl 6-13

2. Data Written onto User-Named File. 6-16

Mai

SECTION VI

OUTPUT

Output from ESP may take a variety of forms, depending upon the needs

and wishes of the user. Printed output may be automatically formatted by

means of the ESP command *PRINT or it may be tailored to the user's speci-

fications using standard FORTRAN. Graphic output may be produced on

computer printout, on microfilm or on paper by the Calcomp pen plotter

(see "IPD Computing Guide, " Ref. 4). Data files may be written onto mag-

netic tapes for later use by another program or for later plotting. Any or

all of these modes of output may be combined in any one program.

Because each mode of output has advantages for particular situations,

the following sections will attempt to give the user sufficient information,

not only to easily use each one, but also to help him decide which best suits

his needs.

A. PRINTED OUTPUT: AUTOMATIC FORMATTING

The fastest and easiest way for the user to obtain printed output from

his program is with the *PRINT command. With this option, the user needs

only to name the variables to be printed and the labels to be assigned; he

gives no print formats. Labels and values are printed in the order named,

six columns to a page, in E-format. All labels are printed and then all

values, so that if there are more than six of each, corresponding labels and

values will not be adjacent, although their correspondence will still be clear

(see example below). *PRINT may be used in two different ways, depending

on the nature of the values to be printed.

I. Printing ESP Variables (*PRINT)

*, If all the values to be printed can be expressed in terms of T, Y, DY,

PAR, constants, user supplied functions, or system functions such as SIN,

COS, and SQRT (i. e., no other variable names are needed to define the

values for output), then the fastest and easiest way to obtain printout is to use

the ESP command card

6-1

A.

*PRINT label= expression $.... label expression $ $
n n

where

*PRINT starts in column 1

label, is 10 characters (8 on IBM) or less (with no embedded
blanks) which will be used to label the value of expres-
sion at print times

expression is any FORTRAN expression using T, Y, DY, PAR,
1 constants, and system functions up to 1206 charac-

ters (No other variables may be used.)

$ $ terminates the entire *PRINT statement (No continua-
tion marks are used and all 72 columns may be used.)

NOTE

*PRINT may appear only once in a program
if it is used without *OUTPUT and -END0UT.

The *PRINT statement will be translated into FORTRAN statements

which will be written as part of SUBROUTINE OUTPUT in the form

PRINT(i) = expressioni

The labels will be written onto a *HEADINGS card which will be placed on

TAPEI2 with the other run-time data cards. The number of labels found on

the *HEADINGS card at execution time will determine the number of values

actually printed from the PRINT vector (see *HEADINGS card, Section VII-G-1.)

EXAMPLE:

'PRINT TIME=T $ SIGMA lI=Y(1)*PAR(1) $
SIGMA 12=Y (2)*PAR (1) $ SIGMAZ1=Y(3)*PAR(1) $
SIGMAZZ=Y(4)*PAR(1) $ PHI=Y (5)*PAR(I) $
PSI=Y(7)-,PAR(l) $ THETA=Y(6)*PAR(1) $
OMEGA I=Y(8)*PAR (1) $ OMEGAZ=Y(9)*PAR(1) $
OMEGA3=Y (10)*PAR(1) $ THP=(Y(6)-Y(II))*PAR()

6-2

*4%:

produces a printout that looks like this:

TIHE 1 iIMNA11 SIGNA12 siGMAZI SJCM2 2 PI
PSI TriEIA OMEGAI OMEGAZ OMEGA3 THP

1.12.052A33 2.?51334E 1 1.2415a2E4OL 9.999832E-39 9.9990M2E-09 -1.5S7568E'026.457j EE 0 "; . b ; i- 6T ? + -8-41 64,43E-03 -5.9?4054 -9? . 5Cq?46f-03 -6.655762E O01

2.10e?8E_4 1 1.2q9 118*01 9.q9qq 32E-Oq 9.939i!2F-Oq -1.7457lqE O00? . r ? , -- ,: . - t .2 5 3 7 4 1 L :. .] -e .6 4 9 4 .r- 0 3 -5 .9 3 5 6 6 E -0 2 4. .2 5 4 -3 0 1 E -6 3 -7 .2 5 5 7 4 1 E ,,.0 1

1.3a)JaU4 JS Z. 1474 4.E 01 1.335265E .L 9.99383zE-39 9. 999032E- ,-C97. 6 7'?61 ,6E .3 -7.65.6244E+6 1 - . 1 35r- , -5.934609E-32Z 3. q92rv59E-&3 -7.115(.244E 01

2. Printing User Variables or Computing Output
(':-*UTPUT... *ENDOUT)

To print the values of expressions which contain variable names other

than T, Y, DY, PAR, system functions or function subprograms, the ESP

command cards, *OUTPUT and * ENDOUT must be used to signal the beginning

and the ending of the output computations and printing commands. All state-

ments between these two cards will be written into the output subroutine, and

the user will find it helpful to remember that this program segment is a

separate subroutine as he decides what he may and may not do within it. In

general, between *OUTPUT and "*-ENDOUT, any FORTRAN or WHELP may be

used to define user output variables, and *PRINT, as defined above, may be
used to print them; but certain rules must be followed:

* * If *PRINT and *OUTPUT... *END)UT are both used, *PRINT
may only be used between *OUTPUT and *END)UT, but it may
appear as many times as necessary here as long as the total
number of print variables specified does not exceed 60.

* User variables appearing in *PRINT expressions must be defined
before *PRINT.

* FORTRAN rules regarding the sequence of declarative and
executable statements within the section must be followed.

6-3

.j

The general format of this section is

-OUTPUT

FORTRAN and WHELP statements (in any order consistent with
FORTRAN rules)

PRINT label I = expression $... label = expression $ $
-PIT lb 1=epeso I n n

FORTRAN and WHELP statements

,ENDOUT

EXAMPLE:

, UT PUT

CMMON/BLOCKA/A, B, R, OMEGA

;IDECLARE A(6,3) B(3,6) R(6) X(6) $ [WHELP statement]

CALL DIDDLE (T, Y, THETA,ALPHA)

X = A B R/ (THETA) $ [WHELP statement]

Z = THETA + T * ALPHA

*PRINT TIME = T $ XI=X(1) $ X2=X(2) $

X3=X(3) $ THETA=THETA $ Z=Z $ $
(additional FORTRAN)

*E NDOU T

Notice that the subroutine DIDDLE must be supplied by the user,

and that the variables A, B, R, and OMEGA must be defined elsewhere.

3. Accuracy of Printed Values

Since the print interval and stepsize are unrelated, it is generally

necessary to evaluate the solution just for printout. Adams integration uses

- the code and method outlined in Ref. 6, and the solution (Y's) and deriva-

tives (DY's) are interpolated from the difference table kept internally. For

predictor-corrector and Runge-Kutta integration, in order to avoid calling the

integration routine just for printout, Hermite interpolation (Ref. 3), which uses

the functional values and their derivatives at three points, is employed to

6-4

',x -

evaluate the solution (Y's) and derivatives (DY's) at intermediate points.

Thus, the proper T(time) and its corresponding Y's and DY's are automati-

cally passed to OUTPUT at a print tine, and these values and any other output

variables computed using only these and constants will be correct for the time

given.

However, since in the process of integration ESP generally oversteps

the print time and "backs up" to print, PAR's and time dependent variables

which may have been passed to OUTPUT by a user-supplied common block

may not correspond to the print time. The best way to avoid this problem is

to recompute these variables within -OUTPUT... -*ENDOUT, so that they will

always reflect the actual values at the print time. If this involves much

computation, the user may want to test PRINT(l), as shown in the example

in Section VI-C, to ensure that these values are recomputed only for printout.

(Since plot data storage occurs at the end of each successful integration step,

or pair of steps, irrespective of the print interval, data stored for plotting

will be consistent and the user need not concern himself with this problem.)

B. GRAPHIC OUTPUT

To produce graphic (plotted) output from an ESP run, the user has two

tasks: storing the data to be plotted and specifying how it is to be plotted.

The simplest way to do these tasks is to store data into the vector PLOT and

then use the *GRAPH command (explained below) to plot it. An alternative

way is to write all plot data onto a magnetic tape or disk file and then plot it

using some other plotting routine (see "IPD Computing Guide, " Ref. 4). The

first method is the simplest and most satisfactory for most user needs. The

latter is useful mainly for very time-consuming program runs where it is

desirable to have output data available for repeated plotting or study without

the necessity of rerunning the program. (Refer to Section VI-D on Data File

Output.) It is also possible to produce overlays using data generated in dif-

* ferent runs (see Appendix F on Multiple Runs.).

6-5

1. Storing Plot Data

All data to be plotted by 'GRAPH must be stored by the user in the vec-

tor PLOT. The simplest way to do this is within the *PRINT statement used

with or without *OUTPUT.. *ENDOUT, as follows:

*,-PRINT TIME=PLOT(l)=T $ RATE=PLOT(Z)=Y(l) $
OMEGA=PLOT(3)=Y(l) + Y(2) $ $

This statement accomplishes both printing and labeling as explained

above and storing of data for plotting. It generates the following statements

in the FORTRAN version of SUBROUTINE OUTPUT.

PRINT (1) =PLOT (1)=T
PRINT (2)=P LO T (2)=Y (1)
PRINT(3)=PLOT(3)=Y(1) + Y(2)

The user may also store the plot data himself if he is not using -."PRINT

or wishes not to bother adding to or changing his *PRINT cards. To do so

he simply adds the FORTRAN statements needed to the *OUTPUT.. *ENDOUT

section of his program. The example above would then become

_OUT PUT
*PRINT TIME=T $ RATE=Y(l) $ OMEGA=Y(1) + Y(2) $ $

P L T (1)=T
P LOT (2) = Y (1)
PLT(3)=Y(1) + Y(2)

'E NDOUT

WARNING

Do not attempt to store plot data in this way in other parts of
the program (anywhere outside of *OUTPUT.. ,ENDOUT); array
PILT will not be recognized and the timing of data storage will
be wrong.

The assumed or default number of plot variables which may be stored in

this way is 10. If more than 10 variables are to be stored, a *MAXPLOTS

card must be placed among the run-time data cards, that is, after *ICCMP...

*ENDIC, but before *RUN. The format is

6-6

N

jMAXPITS n

where

*MAXPLTS starts in column 1

n is an integer (5 100) specifying the maximum number of plot
variables to be used

During execution of the program, ESP uses a file (TAPE11) to store

the data placed in the PLZ)T vector, storing a point at the end of each suc-

cessful integration step or pair of steps and at each switch time. At plotting

time ESP selects a representative sample of this data for actual plotting (up

to 1000 values per variable), and in most cases no significant loss of infor-

mation occurs. However, if the user wishes to have greater control over

the number of points or the intervals over which they are plotted, PROGRAM

ESPPLOT may be used instead. (See Section VI-D- 1.)

2. Plotting Output (*GRAPH)

Printer, film, and/or pen plots are obtained by placing *GRAPH com-

mands after the *RUN which computes the results to be plottedt The

general form is

*GRAPH n n [size][grid][s.-aling][type]
x y[title]

[X title]
[Y title]

*GRAPH n n
x y

where

nx (1 < nx < 100) is the PLOT subscript of the desired x variable

n (1 < n -5 100) is the PLOT subscript of the desired y variable

([size], [grid], [scaling], and [type] are optional, and may appear in
any order after n and n but must appear on the same card with
*GRAPH.) x y

tPlotting is accomplished by the subroutine GRAPH; for more complex needs,1 and some further options, the user is referred to the writeup of this sub-
r" routine.

6-7

More specifically

[size] FSMALL 1[SIZExxyy
OVERLAY

[OVERLAYI]

whe re

Default choice is SMALL

SMALL implies a 6 X 10-in. printer plot or a 10 X 15 in.
hardcopy or film plot

SIZExxyy implies an xxXyy-in. plot (10 X 10-in. or 10 X 15-in.
nicely fills a linear microfilm grid; this will be turned
sideways and possibly cover more than one page on
the printer plots.)

OVERLAY implies size and scaling as on the previous graph. A
new plot will result on the printer while a true over-
lay will be made on pen or film plots (See TYPES).

OVERLAY1 implies the same as OVERLAY except that the data
is completely rescaled and on pen and film a new y-
axis scale is placed at the right end of the graph.

[grid] = [GRrDggg]

wh Default choice is GRID3AI

ggg is the three-character number specifying the type of plot grid
to be used (see "IPD Computing Guide," Ref. 4)

Printer plots are always linear-linear

If grid is semilog or log-log, film/pen plots are made using logl 0 of
the X or Y data or both

,6-
6-8 ,

I

A UTO AUTO
[scaling] [SCALE X XDEL Y YDEL 1]

where

Default choice is AUTO for both axes (automatic scaling based on
actual data stored)

If SCALE appears, the parameters within must be specified for
both X and Y

AUTO produces automatic optimized scaling based on actual data for
X-axis (Y-axis)

X (Y) is the minimum scale value to be used for X data (Y data)

XDEL (YDEL) is the absolute value of the difference between one
scale annotation and the next. For a 10 X 10-in. plot, XDEL
(XMAX - XO)/I0.

[type] [TYPEtl[tZ][t 3]

whe re

Default choice is TYPEP

t. P for printer plots1

or

S for printer plots to be overlaid

F for film plots

C for Calcomp pen plotsi

Any combination of P, F, and C may be used (Example:
* TYPEFC, TYPEP, TYPECFP)

S may be used in place of P if Printer plot overlays are to be made.

If TYPES is specified on the *GRAPH card, no printer plot will be

produced for that card, but the plot data will be stored. Thus,

utilizing TYPES on all but the final overlay card will produce a

single printer plot containing all overlays to be produced.

:See "IPD Computing Guide," Ref. 4, for other steps required to obtain pen
plots.

6-9

EXAMPLE:

The following sequence of *GRAPH cards will produce a single

printer plot with three graphs on it.

*:GRAPH 1 2 TYPES

",GRAPH 1 3 TYPES OVERLAY

"GRAPH 1 4 OVERLAY

[title(s)] = [plot title

where

Default choice is blanks

Each title is any character string appearing in columns 1 through 50.
(Column 1 should be blank to avoid possible misidentification.)

All titles are optional but must appear in the order given, each on a
separate card (To delete one, substitute a blank card.)

EXAMPLES:

1. -,"RUN 5 0 0.1 50

"'GRAPH 1 4

This will produce a printer plot of the Y-axis data stored in PLOT(4)

versus the X-axis data stored in PLOT(l). It will make a SMALL (6 x 10-in.)

plot with automatic scaling and no titles. This represents the minimum

specifications to produce a plot.

2. ''RUN 7 0 0.5 30

*GRAPH 2 5 SIZEI510 TYPEPF SCALE AUTO 5.0 50

ERROR IN ANGLE OF ATTACK
DESIRED ANGLE
DIFFERENCE BETWEEN GOAL AND ACTUAL

6-1

This example shows considerable user control of plot parameters.

It will produce a linear plot on printer and film with an X-axis 15-in.

long and automatically scaled. The Y-axis will be 10 in. with Y at0

5.0 and Y at 505.0. "ERROR IN ANGLE OF ATTACK" will be
max

printed across the top of the plot, "DESIRED ANGLE" along the X-axis

and "DIFFERENCE... " along the Y-axis.

C. PRINTED OUTPUT: USER FORMATTED

At any time the user wishes to produce output printed to his own speci-

fications, he may do so by simply adding FORTRAN print (or write,)

statements and their corresponding formats to any section of his program,

even if he is also using ,"-PRINT or *OUTPUT... *ENDOUT. Since con-

siderable care must be exercised in controlling the frequency of printout

produced in this manner, it is suggested that '-PRINT be used as much as

possible during program development and debugging stages because of its

speed and ease, and that FORTRAN print statements be added only when a

more specific format is needed for production runs. In adding print state-

ments the user should consider the following points:

1. Since each segment of the user's coding results in a separate
subroutine, the user must be careful to print in each segment
only those values known within the section; that is, those
values passed to it by ESP, defined within the segment, or
passed to the segment by user-supplied common block.

2. A print statement placed within 'ICCOMP.. *ENDIC will be
executed once at the beginning of each run, since that is the
only time SUBROUTINE ICCOMP is called. This is the logical
place, therefore, to print variables which are constant for the
particular run. (Refer to Section II-B-STEP5 for a list of the
inputs and constants ESP prints automatically at program ini-
tiation.)

T Since the main program written by PREC)MP does not assign a TAPEn type
name to the Output file, if WRITE statements are used, the user must write
his own main program in order to set TAPEn OUTPUT.

6-11

3. Placed within -DERIVS... ,ENDDERIVS, print statements will be
executed every time the derivatives are evaluated, which is
several times per step at possibly decreasing times, the exact
number depending on the integration algorithm used. Printout
of this type may be useful for specific debugging information,
but will be unwieldy and confusing for general output.

4. Data which is to be printed only at the completion of a run may
be printed from the MAIN program. The user would need to
(1) place a '-RETURN card at the end of the run-time data cards,
to cause program control to return to MAIN; (2) write his own
MAIN (see APPENDIX D-3-b) adding common blocks to transmit
the data to be printed; and (3) add print coding to MAIN between
CALL ESPII and END.

5. Within *OUTPUT.. *ENDOUT is generally the best place to add
print statements, since the output subroutine is called at regular
and predictable intervals, namely, once at the end of each inte-
gration step for plotting purposes and .once at each print time for
printing purposes. As long as printing is accomplished by
'PRINT commands, ESP checks to see that printing occurs only
at the specified print intervals. When the user writes his own
print statements and formats, however, he must be the one to
see that they are executed at the proper times. To do this he
simply tests PRINT(1) (before setting it!). PRINT(1) will be
4HPLOT if OUTPUT is being called for plotting purposes or
5HPRINT if it is called at a print time.

EXAMPLE:

*OUTPUT

If (PRINT(1) .NE. 5HPRINT) GO TO 5
PRINT 100, T, Y(1), DY(1)

100 FORMAT (10, 3E20.8)

5 CONTINUE

*PRINT ...

*ENDOUT"

6-12

D. DATA FILE OUTPUT

In addition to printed and plotted output from an ESP program, the

user may wish to output his data on a magnetic tape that he can reuse after

the termination of his job. Two common reasons for needing this capability

are the desire to use the output as input to another computer program and the

wish to ensure that data from a particularly time-consuming run is saved for

plotting. In either case, there are two alternative ways to save these results,

either by saving TAPEll, the file on which ESP automatically writes all plot

output, or by saving a file created and named entirely by the user. TAPEII

is easier to produce, but because the data on it is both packed and blocked,

a special program, ESPPLOT, must be used to plot it (see below). On the

other hand, a user-created file can be tailored specifically for its later use,

but requires more effort to generate.

1. Data Written onto TAPEII

ESP automatically writes all data stored in PLOT (either via *PRINT

statements or by PLOT(i) = expression, refer to Section VI-B-1) onto a

logical file named TAPE11, which is saved until run completion, plotted from

by *GRAPH, and then released. To save this data after job termination,

the user must transfer it to a magnetic tape. Once stored on magnetic tape,

the data may be plotted at any time using program ESPPLOT.

ESPPLOT is a compiled (binary) main program which is to be run at

some time later than the ESP run whose data it is to plot. It may be used to

plot up to 10,000 points and allows the user to determine the time intervals

to be plotted. Every point or every nth point may be plotted, and symbols

may be placed on the plots at any At interval specified by the user. Steps

required for its use are the following:

a. Make certain that the first element of the array PLOT
stored by the ESP run is time (T).

b. Request the actual tape containing the data and assign it
the logical name TAPE1I.

6-13

L1

C. Execute program ESPPLOT (See control cards in example below.)

d. Write the necessary *Control cards according to the formats
given below.

ESPPLOT *CONTROL CARD FORMATS: All *Control cards must start in

column 1. Non-* cards may occupy columns 2 through 7Z, except title cards,

which are limited to columns 1 through 50.

-MAXPLOTS nJ (n must be the same as n on the
*MAXPLOTS card appearing in the
ESP run. Default value is 10.)

n (Every nth data point is tobe plotted.
N time.Default value is 1. May be changed at

any time.)

IMA X m T minlI T maxl 1 T minmT m

or

-IMAX m ALL Tmin Tmax (The next m sets of *GRAPHS are to be

lotted for the m sets of intervals given.
minn and Tmax apply to the nth'GRAPH

encountered. If Phe m sets of graphs are
all to be plotted for the same Tmin and
Tmax, enter ALL followed by Tmin and
Tmax. To change this, use *RETURN
first: see example.

TICKP LOS At (The symbol V will be placed on the
LJ plotted line every At seconds. The

default is no symbol.)

*GRAPH nx ny [type] [size] [grid] [scaling] (See *GRAPH descrip-
[Title] tion, Section VI-B-2
ix-title] above.)
[y-title]

6

~6-14

RETURN] (End this segment of instructions and
begin another.
*IMAX, *TICKPLOTS, and *GRAPH
must be reentered.
*NLOCAL will retain its value but may
be changed.
*MAXPLOTS will retain its value.)

EXAMPLE:

ATTACH, ESPPLOT, 2ESPPLOT.
ATTACH, SUB LIB, 2ESPFTN.
ATTACH, PLOTLB, 3FTNPLOTLIB.
LIBRARY, SUB LIB, P LODT LB.
(Request TAPEII saved by ESP run)
ESPP LOT.
HARDCPY.
EOR
*MAXPLOTS 12
*NLOCAL 10
*TICKPLOTS 0.2
*IMAX 2 ALL 0. 10.
-GRAPH 1 9 TYPEF

ETA VS TIME
*GRAPH 9 10

ETADOT VS ETA
*RETURN
*NLOCAL 20
*IMAX 3 50. 100. 50. 100. 0. 100.
*GRAPH 1 2 TYPEF
*TICKPLOTS 5.
*GRAPH 1 3 TYPEF OVERLAY

THETA AND TAU VS TIME
*NLOCAL 10
*GRAPH 2 5 TYPEF

X VS THETA
THETA

X
*RETURN
EOF

6-15

In the above example ESPPLOT expects TAPEll to have 12 variables

stored on it, of which the first is time. Selecting every 10th data point and

placing a tick every 0. 2 seconds, it will produce filmplots of variables 9 vs

time and 10 vs 9 from T=0. to T=10.seconds and label them ETA VS TIME

and ETADOT VS ETA, respectively.

A '--RETURN card appears next so that IMAX can be changed. Note

that IMAX in this section specifies 3 time intervals and therefore 3 *GRAPH

cards follow it. However, only 2 plots will result, as the first two are

overlaid. Selecting every 20th plot point, it will plot variable 2 vs time from

time = 50. to 100. with no tick marks. Then it will overlay variable 3 vs

time on the same grid with tick marks every 5. seconds and label this plot

THETA AND TAU VS TIME. Finally, using every 10th data point, it will

plot variables 5 vs 2 from time = 0. to 100. with tickmarks every 5. seconds,

and this plot will have X VS THETA on top, THETA on the X-axis and X on

the y-axis. A final "RETURN card indicates the end of the job.

2. Data Written onto User-Named File

To produce a saved data file which matches some particular user for-

mat, the user must declare and write his own file. To do this the following

steps are necessary:

* Request that a magnetic tape be allocated to the ESP program
and given a logical file name by using the proper control cards.

9 Declare the logical file name by supplying the main program
(ESP's PRECMP normally writes it), and adding the logical file
name to the PROGRAM card (see example below).

* Write desired data on the file by using an unformatted WRITE(lfn)
list statement within *OUTPUT... -,ENDOUT. Remember that the
output subroutine is called at various times for plotting and
printing (refer to Section VI-G), and that any time the user does
his own WRITE statements he must consider the frequency with
which he wants to "write" and allow for it by testing PRINT(l)

*" and acting accordingly.

6-16

I

EXAMPLE:

,[control cards]

?" [control card additions to request and save a tape and to name it
TAPEZO, according to current operating system manual.]

7-8-9

PROGRAM MAIN(TAPEIZ, TAPEII,OUTPUT, INPUT=TAPEIZ, TAPE0)
EXTERNAL DERIVS, ADAMS, ADMNTP
CALL ESPII (DERIVS, ADAMS, ADMNTP)
END
[User supplied subroutines]

:DERIVS
[Equations defining derivatives and switches]

,-ENDDERIVS
*OUTPUT

[Equations defining outputs]

If (PRINT(1) .NE. 5HPRINT) GO TO 5
WRITE(ZO) T, Y(l), Y(2), Y(3), OMEGA, THETA

5 CONTINUE

[More equations defining output, * PRINT, etc.]
*ENDOUT

Notice that the MAIN program, here supplied by the user, is identical

to the one normally written by PRECOMP (see Appendix D-3-b) except for

the addition of TAPE20 to the PROGRAM card, and that the MAIN program

precedes all user subroutines and the ,-* DERIVS section. Also notice that

the WRITE statement is placed inside the output routine (Do not place it in

the derivatives section!) and, in this case, that it will be executed only

when OUTPUT is called for print purposes, which will be at the print inter-

vals specified on the *RUN card and at switch times if NDISPR > 0. This

example will produce a file, TAPE20, with six values per record, one

record for each print time, which will exist on magnetic tape after run

termination and which may be read into another program for input or plot-

ting by an unformatted READ statement.

6-17

A

VII. INPUTS . 7-1

A. Number of Derivatives, Start/Stop Times, and I
Print Intervals ('-RUN) 7-1

B. Initial Conditions: Known Constants (',IV) 7-2

C. User Parameters: Known Constants (-".PAR) 7-3

D. Initial Conditions and Inputs to be Computed
(:1CCONIP... 'ENDIC) 7- 5

E. Data Input from Cards or User Files

F. Inputs to Control Accuracy 7-7

G. Miscellaneous Inputs 7-7

1. Print Headings 7-8

2. Title for Printed Output 7-8

3. Program Control 7-

SECTION VII

INPUTS

The inputs needed for an ESP program may include any or all of the

following: (1) the number of derivatives, (2) the starting and ending values

for the independent variable T, (3) the print interval(s) desired, (4) the initial

conditions (initial values) for the Y's, (5) variables which determine solution

accuracy, (6) miscellaneous inputs which influence program control and

format, and (7) any user variables which may be needed to compute initial

conditions, derivatives, or switching characteristics. The number of inputs

required and the manner in which they are supplied will depend upon the com-

plexity of the user's problem and the degree of flexibility he wishes to build

into the program.

A. NUMBER OF DERIVATIVES, START/STOP TIMES, AND
PRINT INTERVALS (*RUN)

The only inputs required by every ESP job are the exact number of

derivatives, the initial and final values of the independent variable and the

printing interval(s). These are specified on the -*RUN card, which is re-

quired for every run and is always the last card except for -GRAPH, *STOP

or *RETURN (refer to Section VII-G-3). Notice that the print interval may
be changed several times during the run, and that tf i t . (Refer to
Appendix F-I-e for directions on running the solution backward.) The

format is

* .RUN neq t o0 hprint 1It hprint 2 $

whe re

neq is an integer constant specifying the number of dependent
variables (Yi), It should equal the largest subscript of DY
and must be corrected if derivatives are added or deleted.

t is a constant specifying the initial value of the independent
to variable (T) (typically 0.)

7-1

L
*I' w -

h print is the printing interval to be used until the independentp variable (T) reaches tf

1

t is either the value of T at which the solution is to stop or,
I if it is followed by hprintn tfn, it is the time at which the

print interval is to be changed.

$ is optional and terminates the information on the card

EXAMP LES:

1. *RU N 5 0. 0.5 10. $

This runs the solution from 0. to 10.0, printing every 0. 5
seconds, solving for - dependent variables (Yi's).

2. -,,RUN 12 2. 0 0.25 8.0 0.5 20.0 $

This solves for 12 dependent variables, starting at 2. 0 seconds,
and printing every 0. 25 second until T reaches 8. 0 and then
printing every 0. 5 second until T reaches 20. 0 seconds, at
which time the solution stops.

B. INITIAL CONDITIONS: KNOWN CONSTANTS (-:-IV)

If the user wishes the initial values of all the dependent variables (Yi's)

to be zero, he does nothing. If he wishes any to be nonzero constants, the

simplest way to input them is on the *IV card, which is placed among the

run time data cards. IV's retain their value until they are reset on another

*IV card or within the user's coding. The format is

"I/ iv iv2 iv $2 " iv $

where

iv. is either a constant alone or Yi = constant. Values are
I separated by blanks. If a constant appears alone, it is

assumed to be the initial condition of the next dependent
variable. If no value is given for a dependent variable,
it is assumed to be zero.

$ is a required terminator

7-2

AD-AOk 676 AEROSPACE CORP EL SEGUNDO CA ENGINEERING GROUP F/6 9/2
THE ECLECTIC SIMULATOR PROGRAM IESPI USAGE GUIDE.IU)
MAY 80 E R COFFEY, H J WERTZ F04701-79-C-0080

UNCLASSIFIED TR-0080(9320)-1 S -TR-80-212 uhuhh-uuuhhu
IIIIIIIIEEEEEE
*lllllllllllIm
IIIIIIIIIIIIIl
*IIIIIIIIIIIm
IIIEEIIIII

flhI 1.5 flfl~~~, ~f1.8*

11111_L2

MrCROZOPY RESOLUTION TEST CHAIRT
NATIONAL BUiREAU STANDARD, 1%,3

EXAMPLE:

-IV 0. Y6=3.0 6.5 8.2 Yl0=3.0 $

produces: Y(1)=Y(2)=Y(3)=Y(4)=Y(5)=0.0,

Y(6)=3.0, Y(7)=6.5, Y(8)=8.2,

Y(9)=0. 0, Y(10)=3. 0 and any additional

Y(i)=0. 0.

C. USER PARAMETERS: KNOWN CONSTANTS ('PAR)

An array named PAR of length 100 is created by ESP and automatically

passed by the statement COMMON/PARS/PAR(100) to the derivative, output,

switching, and initial computations routines for the convenience of the user.

Its main purpose is to permit the user to introduce parameters into his equa-

tions without having to worry about how they will be defined or passed to

each section, and to permit their values to be easily changed from run to run.

PAR values may be computed in ICCOMP (see below), but if known are

most easily input to the PAR array on a "PAR card which, like the - IV card,

is placed at the end of the program but before the *RUN to which it applies.

PAR's retain their values until they are reset on another *PAR card or within

the user's coding. They may be used at any time by name, i.e., PAR(3).

WARNING

PAR's must not be functions of T. Nonconstant PAR's used as
inputs to SWTCH's or SWMEM's will cause errors in the deter-
mination of switching times, and use of PAR to pass nonconstant
values to be printed will cause discrepancies in printed values.

The format is the same as for ,'IV"* PAR par I par 2 par 3 .. par n $ [

7-3

whe re

par. is either a constant alone or Pi = constant. Values are
separated by blanks. If a constant appears alone, it is
assumed to be the value of the next PAR(i). If no value
is given for a PAR(i), it is assumed to be zero.

$ is a required terminator

EXAMPLES:

1. *-PAR P2=6.75 4.0 P5=8.2 $

This gives: PAR(1)=0.0

PAR(2)=6. 75
PAR (3)=4. 0

PAR(4)=0. 0

PAR(5)=8. 2

2. Use of the PAR array to change parameters easily in a series of pro-

gram runs is illustrated in the following example:

If one of the derivative equations is
DY(3)=SIN(15.) '- Y(1) + CS(20.):-Y(Z) + SIN(25.)*Y(3)

and it is desired to vary the angles over a range of values, the

derivative equation can be written

DY(3)=SIN(PAR(1));',Y(1) + C(S(PAR(Z)),,Y(2) + SIN(PAR(3))*Y(3)

and the following *PAR cards used, one per run, without changing

the equation

;PAR 15.0 20.0 Z5.0 $

*PAR 30.0 35.0 40.0 $

*PAR 72.0 75.0 78.0 $

7-4

4

*PAR and *IV cards are particularly useful in making multiple runs,

that is, in making several runs of the same set of equations as bne job,

varying only the initial conditions, PAR's, or perhaps run times from one

run to the next (see Appendix F-i, "Multiple Runs"). Note that since PAR's

and IV's retain their values from run to run within a job until they are reset

by the user, only those being changed for a particular run need to be redefined.

D. INITIAL CONDITIONS AND INPUTS TO BE
COMPUTED (*ICCOMP... -ENDIC)

If any computation is necessary to set initial conditions or parameter

values, the user will need to write an initial computations section into his

coding. The start of this section is signaled by the card *ICCOMP, and the

end is signaled by :ENDIC. Between these two cards, standard FORTRAN

and WHELP statements may be used, and their sequence is governed only

by the usual rules of FORTRAN and WHELP. All statements in this section

will become part of the initial computations subroutine, ICCOMP, written by

the ESP precompiler program, PREC0MP.

This subroutine is executed once (and only once) per run, so it is the

proper place to perform any operation that is to be done only once before

starting the solution, such as computing PAR's, computing initial values,
reading in data, or rewinding tapes.

*ICC MP.... -ENDIC may be used in addition to or in place of *PAR

and --IV cards. Since the resulting subroutine is executed after *IV, *PAR,

and *RUN have been encountered and processed, the user may input constants

via :PAR or "IV and then safely use them on the right-hand side of expres-

sions within *ICCOMP.

The program segment *ICCOMP... -ENDIC should be positioned after

all user supplied routines, but before all run time cards such as --IV, ,-PAR,

or *RUN (refer to Appendix A-3 for deck structure).

7-5

4

EXAMPLE:

ICCOMP
DIMENSION R(6)
EQUIVA LENCE(PAR(1), R), (PAR(7), RD), (PAR(8), DR)
DATA PI/3. 14159/
RD=180. /PI
DR=PI/ 180.

C INPUT R ANGLES AS PARS IN DEGREES AND CONVERT HERE.
DO 5 I=I,6
R(I)=DR -PAR (I)

5 CONTINUE
*ENDIG
*PAR 10. 20. 30. 40. 50. 60. $
*RUN 3 0. 0.5 10.0 $

E. DATA INPUT FROM CARDS OR USER FILES

Because an ESP job sometimes requires the input of data which cannot

be conveniently handled by 'PAR cards or DATA statements in ICCOMP, the

user also has the option of reading it in with READ or NAMELIST statements.

The data itself may either be on cards as part of the user's deck or it may

be in the form of a user-created file (stored on magnetic tape or disc

storagel. In either case, the best place to read it from is within 'ICCOMP...

*ENDIC.

If the data exists on a manageable number of cards, the data cards may

be placed immediately after the *RUN card(s) for the case(s) to which they

apply. Since PRECOMP copies all cards beginning with the first run time

control card onto TAPE 12, data cards so introduced will exist there during

job execution along with the normal run time control cards. These data

cards may be read as if they were on the standard INPUT file, e.g., READ 100,
• A, B, C.

NOTE

The user must take care to read exactly the correct

number of cards since proper execution of *GRAPH or

any other run time cards depends on the proper position-

ing of the input file. Also, input data may occupy onl

the first 72 columns, as columns 73-80 will not be copied

to TAPE 12.

7-6

Sometimes, however, it may be more convenient to read input data

from the user's own file. This would be true, for example, if the amount of

data is very large, if it is necessary to test for end of file to terminate

reading data for a case, or if 'L.- user already has the data on a stored file

of some sort. If this is the case, the user should:

* Create and save the data file (if it does not already exist), being
sure to write in End-of-Files as he will need them.

0 Add the proper job control cards to assign the saved file to the
job and give it a logical name, say TAPEn.

* Write his own MAIN program (refer to Appendix D-3-b), adding
TAPEn to the files declared on the PROGRAM card.

0 Read the data from the file in ICCOMP by using
READ (n, format) list or [formatted read]
READ (n, name) [namelist read]
READ (n) list [unformatted read]

For more on data input used with stacked or multiple runs, refer
to Appendix F.

F. INPUTS TO CONTROL ACCURACY

In addition to the inputs described above, there are several optional

inputs which may be used to control the accuracy of the solution and the timing

accuracy of discontinuities. All have default values but may be user-defined

by means of special control cards placed in any order, among the run-time

data cards, that is, after the *DERIVS, *OUTPUT, and *ICCOMP sections,

but before *RUN. *EPS and *Q control the solution accuracy directly and are

described in Section IV-A-4. *HSW, '*'HSWM, and ;,*HSWE are used to control

* the allowable timing error in SWTCH's, SWMEM's, and EVENT's, respectively,

and are discussed in Section V-F.

G. MISCELLANEOUS INPUTS

Several other special input cards will be read and interpreted by

PRECOMP. Their use is optional and they are provided mainly for the con-

venience of the user.

7-7

1. Print Headings

The print labels which appear on automatically formatted output are

normally specified on the *PRINT card (refer to Section VI-A) from which

they are read by PRECOMP and written onto a run-time data card called

*HEADINGS, which the user will notice is printed with the other run time

data cards at the beginning of his output. The user may, however, supply

the ",'HEADINGS card himself, in which case his card completely supersedes

the card written by PRECOMP. The number of labels on this card is the

number of output variables which will be printed, even if it is less than the

number of variables specified on the print card. (Thus a *HEADINGS card

with no labels can be used to suppress printout.) The format is

'*HEADINGS label 1 label 2 label 3 ... labeln $

whe re

*HEADINGS starts in column 1

label. : 10 hollerith characters (8 on IBM) with no embedded
blanks, which will be used to label the ith output variable.

n is the number of variables that will be printed. It should
be the same or less than the number of variables listed on
the *PRINT card.

$ is a required terminator

Z. Title for Printed Output

Placing the 'TITLE card among the run-time data cards, somewhere

before the *RUN card, causes whatever is in columns 8-71 to be used as the

title printed at the top of every page of output. The format is

7-8

I..

3. Program Control

The following two cards may be used anywhere among the run-time data

cards, to facilitate program control:

"RETURN This causes program control to return to
PROGRAM MAIN at the point it is en-
countered, typically following a *RUN or
"GRAPH command. It thereby permits
execution of other statements in MAIN,
such as calls to other subroutines or
printing which is to be done only at the end
of a run (see Section VI-C-5).

[" STOP 1 This causes job termination at the point it is
encountered. It should be used after *RUN if
no -."GRAPH follows and normal termination is
desired at that point.

7-9

I'*
I I 7Tl

APPENDIX A

CARD FORMATS AND DECK STRUCTURE

A-1. General Format Rules........................... A-1

A-2. Summary of Card Formats A-2

A-3. User's Deck Structure A-4

Cl)
-I

39i

dC

.1C

~ I'

APPENDIX A

CARD FORMATS AND DECK STRUCTURE

A-I. GENERAL FORMAT RULES

General rules regarding ESP card formats are the following:

* All ESP "shorthand" cards begin with an asterisk (*) in
column I and the first letter of the key word in column 2.

* Items on cards are separated either by blanks or by $
depending on their nature. (See specific cards.)

* Fixed length cards generally require no terminator, but
those of variable length are terminated by a required $.

* FORTRAN statements begin in column 7 and follow the usual
rules of FORTRAN.

* WHELP statements follow the usual format of WHELP

(Appendix H).

General rules regarding use of comment cards:

* Comment cards are denoted only by a C in column 1.
They may appear anywhere within:

* user (sub)programs

*1 the derivative computation section, delimited by *DERIVS
and *ENDDERIVS

* the output routine delimited by *OUTPUT and *END)UT

* the initial computation routine delimited by *ICCOMP
and *ENDIC

the run-time data cards (provided they are between
command cards).

* Comment cards may not be used:

* within the data picked up in response to a command card,
e.g., within the *PRINT specification.

* between any routines, i.e., user routines, after
*ENDDERIVS, *ENDOUT or *ENDIC, or after *PRINT
whevot within OUTPUT.

A-1

A

A-2. SUMMARY OF CARD FORMATS
Section

Reference

* Defining derivatives and discontinuities:

'-DE RIVSII

-tENDDERIVSI

*BLOCK 1 .8 YGi) emi $ Ill-C
*BLOCK 2 ce I I 16 Y(i) Y(j) e.n Ill-C

*SWTGH i 0 +$ 0- $ control.i $ V-A

*SWMEM i input.i $ V-B

* Defining output and initial computations:

*OUTPUT VI-A-2
*E NDOUT T
"'PRINT 1Label expression1 $... labelI n=expression n $ $ VI-A-i

*ICCOM VII-D
*NDIC

* Run-time data inputs:

-~IV iv 1 iv 2 -. iv $ VII-B

*PAR p, p2... pn $ wII-c

',SWITCHES n VD -

*SWMEMCNT n

*NEVENT n v-c
*SWMEMSET n 1 n 2 -. nj V-B-4

*'SWMEMDATA V-B-3

i 1 c 1 c 2 .c 1 0 $

12 c1 c2** c10 $

1n 1l Z**c 10 $

A-2

Section
Reference

-MAXPLOTS n VI- B

*RUN neq t 0 hprint I tf 1 hprint2 tf 2 ... $ VII-A

* Accuracy control:

*:E PS E IV-A-4

'Q ql q 2 ... q $ IV-A-4

'*HSW h I h 2 h $ V-F

*HSWM h h h $ V-F1 2 n

*-HSWE h 1 ... h $ V-F

* Miscellaneous inputs:

*TIT LE ---- title ---- VII-G-2

*HEADINGS label I label 2 label VII-G-In

*S TOP VII-G-3
-RETURN VII-G-3

RK2

*METHOD RK4 IV-A- I

PC

* Plotting:

*GRAPH n n [size][grid][s caling][type] VI-B-2
x y

[title]

[X title]

[Y title]

A-3

A-3. USER'S DECK STRUCTURE

(C DC) (IBM)

[Job control cards JC L cards

7-8-9 card //SYSIN DD

RK2

[P-METHOD RK4

I PC

[PROGRAM MAIN (if written by user) -'PROGRAM ON IBM

SAll user-supplied subroutines, including ICCOMP, OUTPUT,
SWINPT, SWMEMN, EVENTS, and NOTIFY, if the user pro-
vides the entire routine. (See Appendix C-4 reserved names.)

SCoding which defines derivatives and discontinuities, in-
cluding all '*SWTCH, *SWMEM, and -*BLOCK statements
used, beginning with -*DERIVS and ending with *ENDDERIVS.

I [Coding which defines the output: either *PRINT or
L','0UTPUT.. . -,-ENDOUT.

Coding which defines the initial computations: *ICCO7MP..
[:ENDIC.[Run-time data cards, ini any order, including *IV, *PAR,

SWITCHES, *SWMEMC NT, ':SWMEMDATA, *SWMEMSET,
VEPS, --Q, ;,HSW, *HSWM, *HSWE, *NEVENT, *MAXPLOTS

[-RUN

[Any input data to be read by a READ format, list or
READ namelist.

['*GRAPH

[-STOP or ".RETURN

6-7-8-9 IJCL cards

Only those sections or cards marked by an *are required. All others are
optional,

Th order of these three segments, ".DERIVS, -"OUTPUT, and "zICCOMP,
is interchangeable.

A-4

APPENDIX B

CONTROL CARDS AND FILE USAGE

B-I. CDC Control Cards B-1

B-2. IBM Control Cards B-2

B-3. File Usage for ESP without WHELP B-4

B-4. File Usage for ESP with WHELP B-5

2"2

c

m

I,- --

APPENDIX B

CONTROL CARDS AND FILE USAGE

B-I. CDC CONTROL CARDS

(SCOPE 2. 15 OPERATING SYSTEM)

NOTE

The following control card examples apply to the
operating system in use at the publication date of
this manual. Subsequent changes in operating sys-
tem or control cards required will be documented as
they occur.

ESP USED WITH WHELP

$PGMR....
$PARAM....
ATTACH, LIB1, 2NEWRESP.
ATTACH, LIB2, 3FTNPLOTUB.
LIBRARY, LIBi, LIB2.
PRECOMP.
WHELP, IMSORC.

FTN, I=TAPE15.
LGO.

ESP USED WITHOUT WHELP

$PGMR....
$PARAM....
ATTACH, LIB1, 2NEWRESP.
ATTACH, LIBZ, 3FTNPLT LIB.
LIBRARY, LIBi, LIB2.
PRECOMP.
FTN, I=IMSORC.
LGO.

To get hard copy of film plots, add after LGO.: HARDCPY.

B-I

B-2. IBM CONTROL CARDS (JCL)

(IBM 3033 MVS OPERATING SYSTEM)

ESP WITH WHELP

//Z185 JOB...
// MSDLEVEL...
/*JOBPARM ACCT...

00010 // EXEC PGM=PRECOMP
00020 //STEPLIB DD DSN=#4606. ESP. LIB(PREC)MP),DISP=SHR
00030 //SYSPRINT DD SYSOUT=A
00040 //TAPE11 DD DSN =&TAPE 11, DISP=(NEW, PASS), UNIT=VIO,
00050 // SPACE=(TRK, (10. 5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
00060 //TAPEI2 DD DSN=&TAPE 12, DISP= (NEW, PASS), UNIT=VI(,
00070 // SPACE=(TRK, (10, 5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
00080 //TAPE14 DD DSIr4=&&TAPE 14, DISP=(NEW, DELETE), UNIT=VI0,
00090 // SPACE=(TRK, (10, 5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
00100 //TAPE16 DD DSN=&&TAPE16, DISP=(NEW, DELETE). UNIT=VIO,
00110 // SPACE=(TRK, (10, 5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)

//SYSIN DD DSN=# USERID. FILENAME. DATA, DISP-SHR
(if user input resides on a permanent file)

00120 j or
/,/SYSIN DD *

(ESP source program cards)
00130 // EXEC PGM=WHELP
00140 //STEPLIB DD DSN=#4606.ESP. LIB(WHELP), DISP=SHR
00150 //SYSPRINT DD SYSOUT=A
00160 //SYSIN DD DSN=&TAPEI 1, DISP=(OLD, DELETE)
00170 //TAPE15 DD DSN=&TAPE15, DISP'a(NEW, PASS), UNIT=VI J,
00180 // SPACE=(TRK, (10, 5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)
00190 //TAPEI1 DD DSN=&TEMP, DISP=(NEW, DELETE), UNIT=VIO,
00200 // SPACE=(TRK, (10, 4)), DCB=(RECFMM=FB, LREC L=80, BLKSIZE=800)
00210 // EXEC FORTXCLG, CPARM='NOFORMAT, AD(DBL), MAP', COND. LKED=EVEN,
00220 // COND.GO=EVEN, LPARM=LET
00230 //FRT.SYSIN DD DSN=&TAPE15, DISP=(OLD, DELETE)
00240 / /LKED. SYSLIB DD DSN=OPUS. P077. SUB LIB, DISP=SHR
00250 //GO.FTI1IF00 DD DSN=&&TAPEII, DISP=(NEW, DELETE), UNIT=VIU,
00260 // SPACE=(TRK, (10, 5)), DCB=(RECFM=VBS, BLKSIZE=6440, LRECL=16004)
00270 //GO.FTIZF001 DD DSN=&TAPEIZ, DISP=(O LD, DELETE)

*

I

B-2

ESP WITHOUT WHELP

Z185 JOB...
MSGLEVEL...

/*JOBPARM ACCT...
00010 // EXEC PGM=PRECOMP
00020 /ISTEPLIB DD DSN=#4606. ESP. LIB(PRECOMP), DISP=SHR
00030 //SYSPRINT DD SYS0UT=A
00040 /I/TAPE 11 DD DSN=& TAPEI11. DISP= (NEW, PASS), UNIT=VIO,
00050 // SPACE= (TRK, (10. 5)), DC]3=(REC FM=FB, LREC L=80, B LKSIZE=800)
00060 //TAPE12 DD DSN=& TAPE 12, DISP= (NEW, PASS), UNIT=VIO,
00070 // SPACEz(TRK, (10, 5)), DCB3=(REGFM=FB, LRECL-=80, BLKSIZE=800)
00080 /ITAPEI4 DD DSN=& &TAFEI4, DISP= (NEW, DE LET Ej, UNIT =V10,
00090 /1/ SPACEs(TRK, (10, 5)), DCB=(RECFM=FB, LRECL,=80), BLKSIZE=800)
00100 //TAPE16 DD DSN=& &TAPE 16, DISP=(NEW, DELETE), UNIT =V10,
00110 // SPACE=(TRK, (10, 5)), DCB=(RECFM=FB, LRECL=80, BLKSIZE=800)

f/SYSIN DD DSN=# USE RID, FILENAME. DATA, DISP=SHR
(if user input resides on a permanent file)

00120 or
//SYSIN DD *

(ESP source program cards)
00210 -/EXEC FORTXC LG, CPA RM='NOFORMAT, AD (DB L), MAP', COND. LKED=EVEN,
00220 /1 GND.G0=EVEN, LPAlRM=LET
00230 / /FORT.SYSIN DD DSN=&TjAPE11, DISP=(OLD, DELETE)
00240 / /LKED. SYSLIB DD DSN=0PUS. P077. SUB LIB, DISP=SHR
00250 //GO. FT1 IF00 DD DSN=&&TAPE11, DISP=(NEW, DELETE), UNIT=VIO,
GOZ6Q /I SPACE= T RK, (tO, 5 , DCB=(REC-FM=V BS, B LKS1ZE&644(0, LREC L--16004)
00270 //G0. FT12YOO1 DD DSN=&TAPE 12, DISP=(0LD, DELETE)

B-3

B-3. FILE USAGE FOR ESP WITHOUT WHELP

PORAM PREC0MP(INPUT,0OUTPUT, IMS0RC, TAPE1 1 =IMSORC,
TAP12,TAPE60 = INPUT, TAPE14, TAPE 16)

IMS0RC = FORTRAN routines TAPE12 = all run-time data
resulting from PREC0MP cards and any user data cards

I PROGRAM MAINTAPE 1, TAPE12, IN PUT = TAPE12. OUTPUT)

TAPEll I plot data OUTPUT =print data

B-4

B-4. FILE USAGE FOR ESP WITH WHELP

PROGRAM PREC0MP(INPUT, OUTPUT, IMS0RC,TAPE1 1 =IMSORC,
TAPE 12, TAPE60 = INPUT, TAPE14, TAPE 16)]

IIMSORC = results TAPE12 = all run-time data1
of PRECOMP cords and user data cardsJ

I PROGRAM WHELP(INPUT,0OUTPUT, TAPE1 1, TAPE15, 1
TAPE60 = INPUT, TAPE61 = OUTPUT)

[TAPE1 5 = user s rogram after pro- TAPE12 = all run-time data
csigby PREC8M andWHL cadanayusratcrs

PROGRAM MAIN(TAPE1 1, TAPE12, INPUT = TAPE12, OUTPUT)I

TAE potdt UPT1pitdt
B-5

APPENDIX C

PROGRAM VARIABLES AND RESERVED NAMES

C-1. Variables Passed Through Calling Sequences C-i

C-2. Variables Passed Through Common Blocks C-2

C-3. Alphabetical List of Common Blocks and
Their Contents C-3

C-4. Reserved Subroutine Names C-11

2 r
ii'

APPENDIX C

PROGRAM VARIABLES AND RESERVED NAMES

C-i. VARIABLES PASSED THROUGH CALLING SEQUENCES

Routines to which
Variable it is passed:

DY(100) The derivative array DERIVS
OUTPUT

IEVENT An integer indicating the number of the NOTIFY
EVENT being reported to SUBROUTINE
NOTIFY

PLOT(1WO) An array for storing the current. value(s) OUTPUT
of the plotted variables (Equivalent to
VPLOT in COMMON BLOCK UNIPI)

PRINT(60) An array for storing the current value(s) OUTPUT
of the printed variables

STOP A variable which stops the current run if DERIVS
nonzero (Equivalent to T ?. TFINA L) OUTPUT

T The independent variable, usually time DERIVS
OUTPUT
ICCOMM.P
SWMEMN
SWINPT

VALUES(50) An array for storing the inputs to SWTCHs, SWINPT
SWMEMs, or EVENTs SWMEMN

EVENTS

Y(100) The dependent variable array DERIVS
OUTPUT
ICCOMP
SWINPT
SWMEMN

C-1

t

C-2. VARIABLES PASSED THROUGH COMMON BLOCKS

Variable Block Name Va riab le Block Name

BUFFER(80) READIN NDISPR NDISPR

COLCNT READIN NEQ MISGEL

COJNSTS(5O, 10) SWHPAR NEVENT SWTCHS

DY(100) BASIC NFIRST READIN

*DY(100, 9) BLANK NHEAD UNIP2

EPS MISCE L NLOCAL UNIPi

FIRSTP RKCONT NOPLOT UNIPI

FIXSTP STPCON NPAGE UNIPZ

H STPCON NPOINT UNIPI

HEA D(6 0) UNIP2 NTAPII HMAXMN

HHMAX HMAXMN NtJMSTP H-MAXMN

*HHMIN HMAXMN OUT(6o) UNIP2

HMAX STPCON PAR(l00) PARS

HMIN STPCON PLOT(2000) BLANK

H-1P STPCON Q(100) MISCEL

HSW(50) MISCEL STOP(1) MISCEL

HSWE(50) MISCE L SCR1(ZOO) B LA NK

HS WM(5 0) MISCE L SWDBUG SWDBUG

IFclRM(3) UNIPZ SWMEM(50, 4) SWTCHS

ISWTYP SWHPAR SWSET (50) SWHPAR

J LINE UNIP2 SWTCH(5O) SWTGHS

*JSTART STFPAR TO0 BASIC

KFLAG STFPAR TERMCH READIN

KSV SWHPAR T F BASIC

LINES UNIP2 TITLE(8) UNIP2

M F STFPAR TODAY UNIP2

MAX UNIPI TP BASIC

MAXGHR READIN VA LEVS (5 0,2) MISCELIACO READIN VALMEM(50,2) MISGEL

C-2

Variable Block Name Variable Block Name

MAXDER STFPAR VA LUES (50, 2) MISCEL

MAXMEM SWTCHS VPLOT(100) UNIPI

MAXSWS SWTCHS Y(100, 9) BLANK

MXL UNIP2 YO(OO) BASIC

NALTER SWHPAR YPRNT(OO) BASIC

NCHNG SWHPAR

C-3. ALPHABETICAL LIST OF COMMON BLOCKS AND
THEIR CONTENTS

NOTE

Blocks SWTCHS and PARS are written by PREC)MP as
part of SUBROUTINES DERIVS, OUTPUT, ICCOMP,
SWINPT, and SWMEMN. All other blocks must be included
by the user if he wishes to reference them. Block lengths
are given in octal words for CDC use and hexadecimal bytes
for IBM use since these are the bases used to list block size
on maps generated by the two computers. Decimal size of
each block can be easily obtained from the dimensions given
with each variable name.

Block Length

CDC IBM
(Octal (Hex)

COMMON/BASIC/TO, TF, TP, YO(IOO), YPRNT(100), DY(I00) 457 978

TO The initial value of the independent 1 8
variable

TF The current final value of the independent 1 8
variable (May be changed by the user's
program)

TP The last print time 1 8

C-3

Block Length

CDC IBM
(Octal) (Hex)

Y0(100) The initial conditions to be used when 144 320
(next) -RUN is encountered. Set = 0
in ESP.

YPRNT (100) The value(s) of the independent variables 144 320
at the last print time. After a run this
contains the "final" values of the Y's.

DY(100) The value(s) of the derivatives at the last 144 320
print time. After a run this contains the
"final" values of the DY's.

COMMON/BLANK/PLOT (2000), SCRI(200), Y(100, 9),
DY(100, 9)1 7640 7D00

PLT(2000) Plot buffer 3720 3E80

SCR1 (200) Used internally as working space 310 640

Y(100, 9) Y array, including past values of Y's 1604 IC20

DY(100, 9) DY array, including past values of DY' s 1604 1C20

CMMON/HMAXMN/HHMAX, HHMIN, NUMSTP, NTAP11 4 18

HHMAX The maximum stepsize used thus far in 1 8
the run. Automatically printed at end of
run. May be tested or printed by user,
but not changed.

HHMIN The minimum stepsize used thus far in 1 8
the run. Automatically printed at end of
run. May be tested or printed by user
but not changed.

NUMSTP The number of integration steps taken thus 1 4
far in the run. Automatically printed at

end of run. May be tested or printed by
user but not changed.

NTAPI1 The number of data frames written onto 1 4
TAPE1 I for plotting. It is automatically
printed at the end of the run.

The storage in this common block is used differently by different subroutines,

but this describes the most common and generally relevant use. The user
may wish at times to know the contents of this block, but should not alter them.

C-4

A

Block Length

CDC IBM
(Octal) (Hex)

COMMON/MISCEL/STOP(I), Q(100), EPS, HSW(50), HSWM(50),
HSWE(50), VALUES(50, 2), VA LMEM(50, 2), VALEVS(50, 2),
NEQ 1051 1144

STOP(1) A variable which stops the current run if 1 8
nonzero (equivalent to T > TFINAL)

Q(100) Q(i) is used to compute a maximum allow- 144 320
able absolute error in Y(i). It is set
dynamically to MAX(Q(i), I Y(i)j).

EPS EPS is used to compute relative error in 1 8

Y (i):

rror in Y(i)
EPS (erQ(.) ""

HSW(50) HSW(i) is the allowable timing error in 62 190
determining SWTCH(i), normally set on
the "'HSW data card.

HSWM(50) HSWM(i) is the allowable timing error in 62 190
determining SWMEM(i), normally set on
the ,'HSWM data card.

HSWE(50) HSWE(i) is the allowable timing error in 62 190
determining EVENT(i), normally set on
the ;*HSWE data card.

VALUES(50, 2) VALUES(i, 1) and VALUES(i, 2) store the 144 320
current and previous values of the inputs
to -SWTCH(i), alternately.

VALMEM(50, 2) VALMEM(i, 1) and VALMEM(i, 2) store the 144 320
current and previous values of the inputs
to *SWMEM(i), alternately.

VALEVS(50,2) VALEVS(i, 1) and VALEVS(i, 2) store the 144 320
current and previous values determining
EVENT(i), alternately.

NEQ The number of derivative equations to be 1 4

integrated: set by the user on the *RUN
card.

C-5

A

Block Length

CDC IBM
(Octal) (Hex)

COMMON / NDISPR /NDISPR 1 4

NDISPR A flag which controls printing at switching 1 4
points. If 0, no print at switch times; if 1,
one print at switch times; if 2, print and
plotting occurs on left and right of each
switch. (NDISPR = 1, nominally)

COMMON/PARS/PAR(100) 144 320

PAR(100) An array for storing and automatically 144 3Z0
transmitting user variables, which may be
easily input on a '.-PAR card.

COMMON/READIN/CO LCNT, BUFFER (80), MAXCOL,

MAXCHR, NFIRST, TERMCH 125 158

C)LCNT Used internally by READIT: points tc 1 4
beginning of next scan.

BUFFER(80) Used internally by READIT: the current 120 140
card in 80AI FORMAT.

MAXC(L Used internally by READIT: the last 1 4
column to be scanned.

MAXCHR Used internally by READIT: maximum 1 4
number of characters to be picked up
in a hollerith field

NFIRST Used internally by READIT: points to 1 4
beginning of field just read.

TERMCH Used internally by READIT: any hollerith 1 8

character to mark the end of a field.

COMMON/RKCONT/ FIRSTP 1 8

FIRSTP A flag set to 1.0 by routine ESPCTL if 1 8
Ru.nge-Kutta is used to indicate the beginning
of each step in fixed step mode or the
beginning of each pair of steps in the variable
step mode. Otherwise, FIRSTP=O.

C-6

.. *... , -, l ll.. .. ., *i"i
:

.... -,T ' -, = - -... _

Block Length

CDC IBM
(Octal) (Hex)

COMMON/STFPAR/MF, KFLAG, JSTART, MAXDER 4 10

MF Used internally 1 4

KFLAG A flag returned from the integration 1 4
routines to indicate success or failure
of the integration step just taken.
KFLAG=1 indicates error exceeded
bounds and a warning message willbe
printed.

JSTART A flag used to indicate the start (restart) 1 4
or continuation of integration. JSTART=O
when integration is starting or restarting.
JSTART=1 when integration is continuing
on from previous steps.

MAXDER Used internally 1 4

COMMON/STPC)N/HP, H, FIXSTP, HMIN, HMAX 5 28

HP The current printing interval. This is 1 8
normally changed from the *RUN card
but may be changed by the user's pro-
gram during the run and must be > 0.

H The current integration stepsize. If 1 8
set d 0 in ICC)MP this H will be tried
first.

FIXSTP The actual stepsize selected by the user 1 8
for fixed stepsize integration using all
Runge - Kutta

HMIN A lower limit on the stepsize, nominally 0. 1 8
May be set by user.

HMAX The maximum stepsize permitted, 1 8
nominally 1. 0E50. May be set by user.

C-7

Block Length

CDC IBM
(Octal) (Hex)

COMMO N/SWDBUG/SWDBUG 1 4

SWDBUG Logical variable which controls printing of 1 4
data for switch debugging. If SWDBUG
* FALSE. (default) no print. If SWDBUG =

* TRUE. print data to aid in debugging of
switches.

C OMMO N/SWHPAR/NCHNG, NA LTER, ISWT YP, KSV,
CiNSTS(50, 10), SWSET (50) 1052 1078

NCHNG A flag indicating whether any switches 1 4
have just changed state during an integra-
tion step

NALTER A flag used internally by SWTCHE 1 4

ISWTYP Used internally 1 4

KSV Used internally 1 4

CONSTS(50, 10) CONSTS(i, j) is the constant Cj for 764 FAO
SWMEMi. Although CONSTS are normally
defined on the *SWMEMDATA card, the
user may include common block SWHPAR
aid define the CONSTS in ICCOMP. (No
error test is made on CNSTS so defined.)

SWSET(50) The vector of values used to initialize 62 C8
SWMEMS in saturation rather than dead-
band. Normally input on the *SWMEMSET
card.

COMMON/SWTCHS/SWTCH(50), SWMEM(50, 4), MAXSWS,
MAXMEM, NEVENT 375 7DC

SWTCH(50) The ma.gnitude is 1+ the number of times 62 190
SWTCHi has switched. The sign is the
current sign of the input. On the first call
to DERIVS following a switching, all switches
which have changed state have their magni-
tudes increased by 0. 5.

C-8

Block Length

CDC IBM
(Octal) (Hex)

SWMEM(50,4) The output characteristics of SWMEM 310 640
nonlinearities. SWMi=SWMEM(i, 3)
-SWMEM(i, 2) *(SWMEM(i, 1)- "input").
SWMEM(i, 4) is a flag indicating the
state and a change of state in SWMEMi.

MAXSWS The maximum i for which SWCHi is 1 4
serviced

MAXMEM The maximum i for which SWMi is 1 4
serviced

NEVENT The number of EVENTs to be serviced, 1 4
set by the user on the -,-NEVENT card.

COMMON/UNIP1/VPLOT (100), NOPLT, NP0INT, NLCAL,
MAX 150 330

VPLObT(100) Temporary storage for the current 144 320
(100) PLOT variables

NOPLT A flag to prevent saving of any PLOT 1 4
variables. If NOPLT T0, no PLO)T
variables are saved and OUTPUT is only
called at print times. (NOPLT=0
nominally)

NPOINT During run time, the actual number of 1 4
points saved on TAPEll for plotting.
At end of run, the acti-A number of
points to be plotted.

NLOCAL During run time, the number of points in 1 4
the PLOT buffer. (NLCAL-5 2000 for
CDC, 4000 for IBM.) At conclusion of run,
the number of frames per plot point. Must
not be changed by user.

MAX The number of words per plot frame 1 4
written onto TAPElI by ESP

C-9

VA11 1 - -

Block Length

CDC IBM
(Octal) (Hex)

COMMON/UNIP2 /HEAD(60), O)UT(60), TITLE(8), T(ODAY,
NHEAD, LINES, NPAGE, J LINE, MXL, IFORM(3) 211 428

HEAD(60) Vector which contains print headings 74 IEO
normally picked up from -*PRINT state-
ment, but may be set directly by user-
written FORTRAN statements, or on
*HEADINGS card.

OUT(60) Vector containing output values to be 74 lEO
printed. Equivalent to PRINT(60) in
OUTPUT.

TITLE(8) Vector containing title specified by user 10 40
on -.'-TITLE card

TODAY Contains actual date returned by sub- 1 8
routine DATE and printed on output.

NHEAD The number of print variables (head- 1 4
ings)

LINES The number of print lines per block of 1 4
print

NPAGE Page number for printout 1 4

JLINE Used internally by UNIP2 to control 1 4
printed output

MXL Used internally by UNIP2 to control printed 1 4
output: number of blocks of printout per
page.

IFORM(3) Contains output format to be used for 3 12
printed output, based on accuracy require-
ments.

C-10

c-lo

C-4. RESERVED SUBROUTINE NAMES

NOTE

The subroutines listed below are loaded and used during execu-
tion of an ESP job. The user should be careful not to duplicate
any of these names when adding his own subroutines, except in
the case of DERIVS, ICCOMP, OUTPUT, SWINPT SWMEMN or
MAIN when he intends to supply the entire routine himself.

ROUTINES USED BY ESP AND GRAPH

ABORT FRAMES LOGGRD SCAL.EPR

ADAMS FRAMXX MAIN SECNZR

ADMNTP GENGRD NABLE SHIFT

AND GRAPH NEXTGHR SKIPFIL

BUFF GRAPH2 NEWGRD SKPFIL

GKBLNK GRAPHX NOTIFY STDGRD

GOMPL ICCOMP NUMBER SWINIT

CONS ICKBLNK NUPLOT SWINPT

DECOD IDECOD NXTCHR SWMEMN

DERIVS IDFRAM OR SWTCHE

EOFSlM IPICK OUTPUT SYMBOL

ENGOD JUNK PACKER SYSTEM=

EOF LABGHK PARRAY TIM2GO

ESPGTL LlBRST PINOUT TIMEIN

ESPII LIBSET PLOTS TIMEOU

ESPRNT LIERR PLTSYM TIMEOUTI.ESPLOT LEVEL READIT
EVENTS LEVELI REMARK

FILBUF LEVEL2 RESTOR

FILLBUF LINGRD) SCA LEP

C-11

.74

ROUTINES USED BY WHELP

CGROSS MATINV MATZRO SCAMAT

IDENT MATMAT MOVE TRNSML

MATADD MATSUB NEGATE TRNSPS

COMMON BLOCK NAMES (may not be used as subroutine names on IBM)

BASIC HMAXMN READIN SWHPAR

B LANK LIBSCR RKCOINT SWTCHS

CONSTS MISCEL STFPAR TEMSTR

EOPSIM NDISPR STPCON UNIP1

GRAPHP PA RS SWDBUG UNIP2

C- 12

APPENDIX D

PROGRAM CONTROL AND EXECUTION

D- 1. Introduction......................................D-1

D-2. ESP Control Cards and What They Do D-Z

D-3. PRECOMP. D-4

D-4. Run-Time Routines D-7

APPENDIX D

PROGRAM CONTROL AND EXECUTION

D-1. INTRODUCTION

How an ESP program works can be considered on two levels. First,

there is the manner in which the control cards put the program together from

the user's deck and the ESP files. Then, there is the manner in which the

program actually executes to solve the user's problem. This appendix will

attempt to clarify both, first by providing a diagram showing the relationship

of control cards, compilers, libraries and files and second by providing

descriptions and flowcharts of the major subrouti,,-.s which make up the ESP

library.

* D-1

z

crj vou tc

(,~ &4 0

0 (a bo u

X 000 t k 0.)0 ;

o k toH

4D 0 0 <)$ < 0 <

-'4 4,d)44

;4 a4

o 0 -.

p 4 U 4

CuU 'd 4Jk

H H1
pC4 o_ k_ N_

P, 14 N ** I -

C~a) 40__ _ E'_ _ _.4_

En 4D-2

E j'd5a

04 C~ U)o 0 m

% V4) Cd 4

4 ISm Z : ;.4 oC 0

u 4 C . rn% .

4 F,:s d 4

Ad A. A A

F4 ' , zuu 4,11 U) 0

0 0

4J 41

C: 4 0boo a, u

I4-1

4J 4)44 410

P44 (d
44 4)(d- -4$40

4.) 4U 4C4 U U) 4.n 0U0

;4 - cd 1

P4 (d 4) ~) 4

0 0 bb C

r '.4
0 E-4 P. k

H 0 4o..U
to 0

4*J4 - k u 144

00) 0

0t4
cii

..4 -4 0

-E-4

D-3

D-3. PRECOMP

D-3-a. What PRECOMP Does

PROGRAM PRECOMP is a precompiler, written in FORTRAN on

CDC and PLI on IBM, which reads the user's ESP language input deck or file

and translates it into executable FORTRAN routiness to be used by the ESP

run-time package. Its chief functions are to "crack" the *control cards

such as *BLOCK, -SWTCH, and *PRINT, and to write the additional cards

needed to complete those subroutines based on user coding, namely MAIN,

DERIVS, ICCOMP, OUTPUT, SWINPT, and SWMEMN (see Appendix D-3-b).

PRECOMP operates by making repeated calls to SUBROUTINE

READIT (which reads the user's card images) and by writing these card

images out onto file IMSORC until a signal card is detected. It then tests the

signal card to determine its next action, which may be copying more cards,

setting flags, translating the data on the signal card, or writing additional

FORTRAN statements onto IMSORC to complete the subroutines. Since

READIT depends upon blanks, $ terminators, and - to delimit fields of data

and to tell it how to handle data, formats for all ESP cards should be followed

carefully.

Each time PRECOMP is executed, it will do the following ten steps

in order, although substeps may be in any order, as indicated:

1. Call TIMEIN to get precompiler starting time.

2. Process *METHOD card if used.

3. Write PROGRAM MAIN, specifying proper integration
package, or copy user's PROGRAM MAIN, if provided.

4. Copy all user-supplied subroutines and/or functions.

'If WHELP statements are used, however, they are copied as is and must be
converted to FORTRAN by the WHELP precompiler.

D-4

i

5. Write SUBROUTINES DERIVS, ICC)MP, and OUTPUT in
any order as follows:

a. Write SUBROUTINE ICCOMP using all cards contained
between *ICCOMP and ;:-ENDIC. If no :ICCOMP is
used, write a dummy routine.

b. Write SUBROUTINE OUTPUT using all cards contained
between "OUTPUT and ' 'ENDOUT. If no -4)UTPUT
appears, use data on *:PRINT card. If neither *OUTPUT
nor *PRINT is used, write a dummy routine.

c. Write SUBROUTINE DERIVS using all cards contained
between -'DERIVS and *ENDDERIVS. Within this
section, do the following in any order:

(1) Copy FORTRAN and WHELP statements as given.

(2) Translate -,BLOCK cards into FORTRAN and
write as part of DERIVS.

(3) Process -'SWTCH and .SWMEM cards by writing
SUBROUTINES SWINPT and SWMEMN containing
the input expressions and by adding code to
DERIVS to define SWTCH and SWMEM output.

6. Write *HEADINGS, -,"SWTCHES, and -SWMEMCNT cards on
TAPE 12.

7. Copy remaining input, such as -IV, *PAR, or -"RUN cards

and user data cards, up to EOF, onto TAPE12.

8. ENDFILE 12 and REWIND.

9. ENDFILE IMSORG and REWIND.

10. Call TIMEOUT to compute precompiler time used.

D-3-b. CARDS WRITTEN BY PRECOMP

Below is a listing of the cards written by PRECOMP which are

added to the various segments of the user's coding to produce complete sub-

routines. If the user chooses to provide any or all of these routines himself,

he should be careful to include all of the cards listed and to insert his own

D-5

r.

coding where indicated. Notice that when a particular routine has no function

and is written as a dummy (see SUBROUTINE ICCOMP in Example Problem,

Section II) not all of the cards below will be listed. Also, if the WHELP

precompiler is used, it writes additional common block statements for its

own needs.

MAIN PROGRAM

PROGRAM MAIN (TAPEll, TAPE12, INPUT=TAPE12, OUTPUT)
EXTERNAL DERIVS, METHOD, INTERP
CALL ESPII (DERIVS, METHOD, INTERP)
END

where

Adams RK2 RK4 Predictor/Corrector

METH D ADAMS ESPRK2 ESPRK4 ESPPC

INTERP= ADMNTP INRKPC INRKPC INRKPC

DERIVATIVE SUBROUTINE

SUBROUTINE DERIVS(T, Y, DY, STOP)
DIMENSIN Y(100), DY (100), PAR(100)
COMMON/SWTCHS/SWTCH(50), SWMEM(50, 4), MAXSWS, MAXMEM, NEVENT
COMMON/PARS/PARE coding which defines derivative equations as DY's and the desired

outputs of any discontinuities used.
RETURN
END

*SWTCH INPUTS SUBROUTINE

SUBROUTINE SWINPT (VALUES, T, Y)
DIMENSION VALUES(l), Y(l), PAR(100)
COMM N/SWTCHS/SWTCH(50), SWMEM(50, 4), MAXSWS, MAXMEM, NEVENT
COMMON/PARS/PAR

coding which defines input expressions to SWTCHs and stores them
in array VALUES.

RETURN
END

D-6

• . , ' Z ,,

:SWMEM INPUTS SUBROUTINE

SUBROUTINE SWMEMN (VALUES, T, Y)
DIMENSION VALUES(l), Y(I), PAR(100)
COMMO N/SWTCHS/SWTCH(50), SWMEM(50, 4), MAXSWS, MAXMEM, NEVENT
COMMON/PARS/PAR

coding which defines input expressions to SWMEMs and stores them
in array VALUES.

RETURN
END

OUTPUT SUBROUTINE

SUBROUTINE OUTPUT (T,Y, DY, PL T,PRINT,STOP)
DIMENSION Y(100), PAR(100), PLLT(10), PRINT(60), DY(100)
COMM N/SWTCHS/SWTCH(50), SWMEM(50,4), MAXSWS, MAXMEM, NEVENT
COMMON/PARS/PA R

[coding which defines print and plot values and stores them in
PRINT and PLOT, respectively.

RETURN
END

INITIAL COMPUTATIONS SUBROUTINE

SUBROUTINE ICCOMP(T, Y)
DIMENSION Y(100), PAR(100)
COMMO N/SWTCHS/SWTCH(50), SWMEM(50, 4), MAXSWS, MAXMEM, NEVENT
COMMON/PARS/PAR

coding which defines any initial conditions, computes program
constants, or performs any task involved with program initialization.

RETURN
END

D-4. RUN-TIME ROUTINES

Once PRECOMP is finished, IMSORC will contain PROGRAM MAIN,

SUBROUTINES ICCOMP, OUTPUT, DERIVS, SWINPT, SWMEMN, EVENTS

and NOTIFY, and any other subroutines provided by the user to his program.

In order to complete the program and make it executable, a group of sub-

routines to be referred to as "run-time" routines will be selected from the

ESP library and added to the program. The internal workings of most of these

routines probably are not relevant to the user, but a brief description of each

follows.

D-7

To aid the user in understanding ESP and perhaps in debugging his

program, some further information is included. Appendix D-4-b shows the

overall relationship of subroutines during execution. Further, Appendices

D-4-c, i-vi, contain schematic flowcharts of those run-time routines most

significant in program control and logic, namely, SUBROUTINES ESPII and

ESPCTL, and the integration routines ADAMS, ESPRK4 (ESPRK2), and

ESPPC.

D-4-a. Routines Provided by ESP (Run-Time Routines)

ESPII Controls overall execution by such operations as reading and
interpreting run-time cards, controlling multiple cases, and
calling plot routines (see flowchart, Appendix D-4-c-ii).

ESPCT L Controls all of the tasks needed to execute one -*RUN card,
which includes initializing and printing variables, calling the
integrator routine selected, printing warnings if integration
was unsuccessful, checking for switches and calling the appro-
priate switch routines, and storing print and plot data at the
correct times (see flowchart.. Appendix D-4-c-iii).

ODESOL The integration routine, which will be one of the following:

ESPPC Predictor-corrector method

ESPRK2 Second order Runge-Kutta

ESPRK4 Fourth order Runge-Kutta

ADAMS Adams integration

(See Chapter IV, Integration Package, and Appendices
D-4-c, iv, v, vi.)

INTERP The interpolation routine used to interpolate data for printout

and switchings, which will be one of the following:

INRKPC Used for predictor-corrector, RK2 or RK4

ADMNTP Used for Adams integration

ESPRNT Calls OUTPUT to obtain print data and does actual printing
of output.

ESPL(OT Calls OUTPUT to obtain plot data and stores plot data for
later plotting.

D-8

k \

SWINIT Initializes switches and reinitializes them after a switching.

SWTCHE Evaluates SWTCH, SWMEM, and EVENTS inputs by calling
SWINPT, SWMEMN, and EVENTS, detects sign or state
changes, locates zero crossings, and flags outputs.

SECNZR Finds the zero crossing when SWTCHS, SWMEMs, or
EVENTS have been detected.

DATE Returns date on which run is executed.

READIT Reads data from specified input stream, terminating on the
character indicated (blank or $).

TIMEIN Records solution starting time.

TIMOUT Records solution stop time.

GRAPH Does actual plotting.

RESTOR Used to manipulate plot buffers.

FILBUF
PACKER Used internally for file reading and manipulation.
SKPFIL

DIFTAB Called by ESPPC to see if stepsize doubling will introduce
numerical instability.

D-9

D-4-b. Relationship of Routines During Execution

SW'NPT I

NOTES:O

(1 -routine ispart of ESP

INAME I-routine contains user code

I NTR

2. Many routines are called more than once by their

calling routine but are shown only once
3. ODESOL and INTERP: are internal variables representing the following

subroutine names, depending on the integration method selected:
Method ODESOL INTERP

Predictor ICorrector ESPPC INRKPC
RK2 ESPRK2 INRKPC
RK4 ESPRK4 INRKPC
ADAMS ADAMS ADMNTP

D-10

tV

D-4-c. Flowcharts of Significant Routines

D-4-c-i. Explanation of Flowchart Conventions

Call the subroutine whose
FORTRAN name is OUTPUT

Call subroutine UNIP1, which performsI the function described in the box beneath
it. The two way arrow indicates that

i elotdata program control returns to the main line
at completion of the subroutine

C H Compute H only if H < 0; then

Compute H continue on "NO" path

NO"

1010 Enter at this point after a branch
from another location

Branch from this point to the
corresponding entry

p. 3 Multipage flowcharts continue from the

dangling arrow in the lower left corner
p. 4 of a page to the entry arrow at the

upper left of the next page

Names appearing in all capital letters
FIRSTP represent actual FORTRAN names

D-11

D-4-c-ii. Flowchart of Subroutine ESPII

(page 1 of 1)

- C MAI)' ' .ESPI I

Return today's date

Set flags, counters, switch variables, EPS,Q, and CONSTS
to default values. Zero out PAR, YO and TITLE

Read next card on TAPE 12

NO

NO
YES Read and process information

On TAPE 12 up to next ::: card EOF (121
or EOF. Do one plot ?

NOYES

RUN YES Begin printed output: date of
or RUNC version, solution start and EXIT

? stop times, et

NO TIMEINF Read and process data from an'
othe r ,:card up to next * or EOFII RWNDl .

Position 11 at end of previous data if RUNC is used

Write remaining plot array contents onto TAPE 11

Endfile 11

j~1 End printed output: max and min step used[' no of integration steps, no. opts o be plotted.
j. and no. of pts o AEI

D-12

-%D-4 -c -iii. Flowchart of Subroutine ESPCTL
(page I of 3)

Initialize Q:
Q (1) -MAX IQ(1), IY I)

Pint SWMEM constants, EPS, Q,
H SINK HSWE, nonzero 1)/s and PARs

Zero out inputs and outputs of all

switches and the plot buffer

Initialize T, TP, Y, Stepsize
and stepsize limits

Set pr olope siniauefn

NOTCs flag on SWTC~s andESE~

EVNT VETsneut

DS- 3

D-4-c-iii. Flowchart of Subroutine ESPGTL

(page 2 of 3)

Se Y(12) DY(I = 1 , E

H YES CoptH

!s 0omptegrHt

NO1

Str lt aaa

D-4-c-iii. Flowchart of Subroutine ESPCTL
(page 3 of 3)

Print error message:KFLAG YES "Requested accuracy not achieved at T

< * ? I
Remainder

of solution is suspect."

W NO
Su cessful step taken.

JcMTP - NUMSTP I

any switches YES

used

NO Evaluate switch inputs. detect and locate sign changes,

U

Are

I Eflag outputs. Print at all print times up to switch time.

Have
Yy switches YES

switched? G D
NO [Evaluate derivs with 0 1 5s o

STOP YES
0 RETU

Store plot data at NO

Fnew integration step

T < YES
TF 0.999999 215

NO

T YES rint at all remaining Read next data
TF-0. Print times up to TF on - RUN card

S

Pri
NO EOF (12) YES

tE

n

1.0 EXIT

Is YES ?
T print 245

time NO
?

Now YES New YES
HP on TF on 245

RUN U

Com te next print time: ? ?
TP - TP - HP NO NO

RETURN I Error n*ssagel
I and RETURN

I nterpolate Ys a nI
DYs for printinff

ESPRNT OUTPUT

reir IrIn, at n. ,.,
print time

D- 15

D-4-c-iv. Flowchart of Subroutine ADAMS
(page 1 of 2)

START - JALSE.

0 ? TART - TRUE.

+ KOLD
YES _EE

NO
KOLD ;zz JSTART

CRASH - I j CRASH KFLAG

START YES H - HOLD.TRUE.

NO

H
too small YES

for machine Compute acc

Print warnin
NO CRASH - 0

Error
tolerance too YES

small for Compute acce

machine

Print warning message
NO CRASH - 0

CRASH - I I

Initialize variables

START YES Compute H for first step
HOLD - 0

TRUE. K- I
? KOLD - 0

NO JALSE.

IFAIL - 0

100

H YES
HOLD NS - 0

?

NO

NS YES
s KOLD NS NS + 1

?

No

F NSPI - NS 1

D- 16

D-4-c-iv. Flowchart of Subroutine ADAMS
(page 2 of 2)

KYESI Compute those coefficients of formulas which
ISIS YD are changed when stepsize H is changed

SPredict a ksolution I

DEIV

Estimate errors at Evaluate deatives at T
orders K, K-1, K-2TKNEW - K using predicted solution.

~~~YEs -q W- -

•NO

( I Successful step:

YES7IKL

accepable I HOLD •H
?1 Correct predicted solution

Restore T and related variables Evaluate derivs usjingl

SIFAIL - IFAIL + 1 corrected solution

SUpdate differences for next step.

POS Determine best order and step size
Compute IALCompute nwH for next step
optimum H -3 ? KNEW I

• l JCRASH - 0

EPS - EPS + EPS
RETURN

D -17

" 4A,



r

D-4 -c - v. Flowchart of Subroutine ESPRK4 (ESPRK2)
(page 1 of 2)

Set method flag:
MF - -1

FiXSTP YES NODUBL YYES OK to double step:
0 0 H 2.0 H

NO NO

Fixed step u H MIN (H, HMAX)
H02 - 0.5 *!H H02 - 0.5 ::: H
KFLAG - I H2 2. 0 H

NODUBIL 0

Take double step DERIVS

0
3 calls to DERIVS for RK4

t I call to DERIVS for RK2

Take first of two DERIVS
single steps

TSAVE - T calls for RK4

3 call
T - T + H I call for RK2

FIXSTP YES
>0 FIRSTP - 1.0
?

NO
DERIVS

FIRSTP - 0

Take second of o
single steps DERIVS

4 calls for RU
2 calls for RK2

D- 18



D -4 - c-v. Flowchart of Subroutine ESPFRK4 (ESPRK2)
(page 2 of 2)

ERRSQS =0

D-19 YS KFAG-

Ep2NDB



D-4 -c - vi. Flowchart of Subroutine ESPPC

(page I of 3)

7 KFLAG 

-
I

JSTART YES
0

NO

tep using RK4

IJSTART 11

= 1 step i

< JSTART 
Y ES 

Take

NO
NUMSTP 7 -NUMSTP I
LCOUNT - -3
KCOUNT - 00 LDOUBLE FALSE.

2000

DOU BLE YES
JRUE. DOUBLE JALSE.

Do dou

'I NO ble interval

Do single interval PIC integration

PIC integration

Fcompute Derivs aE ] H]

NODUBL - I Compute Deriv
at T + H Error YES (Stay with single intervalltoo large -4

FlXSTP ES 
? LCOUNT

>0 55 NO
Double the interval
D Fub

7 NO LCOUNT =-2OU0 ' tKCOUNT- 0

D-20



D-4-c -vi. Flowchart of Subroutine ESPPC
(page 2 of 3)

L---------------
D i I* IJO 20

L -------- -- -



D-4-c-vi. Flowchart of Subroutine ESPPC
(page 3 of 3)

TSet method 
flag:

DF -2

A0 YE S  
RETU RN

Test to see if stepsize doubling

will cause instability.

NO

D-22



AI'PENDIX E

I\TEGRATOR EQUATIONS
=>

Om z
-i. Ada Inte-ration . . . . . . . . . . . . . . . . . . . . . . E - m

E-2. Semd-Order Runge-Kutta ..... ................ >!n

, ',,rth-Order Runge-Kutta . E-:

E-. Hanmming Predictor Corrector ................... 

II

~w~z~ m-m i



APPENDIX E

INTEGRATOR EQUATIONS

In all descriptions given below, assume a differential equation of the

form

dt = f(t,y)

with y a vector. For ease of notation, y = Y(tn

E-1. ADAMS INTEGRATION

Adams integration is a highly complex variable-order, variable-step

algorithm, which is completely documented in Ref. 6. As its complexity

precludes condensation, the user is referred to Section IV-B and Appendix

D-4-c-iv for an overview of the method and to Ref. 6 for the actual algorithm.

E-2. SECOND-ORDER RUNGE-KUTTA

Yn+l yn + 0.5 h(k 0 + k 1 ) (E-I)

where

k0 = f(tno Yn

k I =f(t n + h, yn + hk 0 )

In the RK2 fixed-step mode, Eq. (E-1) is used to take two steps at a

time before checking for such items as print, plot, and switchings. In the

RK2 variable-step mode, a step of size 2h is taken first and compared with

the result of two normal steps. If 'n+2 is the result of the 2h step and yn+2

is the result of 2 normal steps, the estimated error vector is

err = - y+ 2 )/3. 0

E-1



which is added to y n+2 to improve the accuracy. This error vector is used

to control stepsize based on the test outlined in Section IV-C, namely, let

bnd = eps X max (y n+, q )

then

1. If err > bnd in any component, halve the stepsize (if allowed)
and retry.

2. If err < bnd/30. 0 in every component, set h = min(stepmax, 2h)
for the next step.

E-3. FOURTH-ORDER RUNGE-KUTTA

Yn+l = Yn + h(k 0 + 2k 1 + 2k2 + k3)/6. 0 (E-2)

where

k0 = f(t, yn )

k = f(t n + 0.5h, yn + 0. 5hk 0 )

k2 = f(t n + 0.5h, yn + 0.5hkl)

k3 = f(t n + h, yn + hk2)

In the RK4 fixed-step mode, Eq. (E-2) is used to take two steps at a time

before checking for such items as print, plot, and switchings. In the RK4

variable-step mode, a step of size 2h is taken first and compared with the
result of two normal steps. If n+Z is the result of the 2h step and yn+2 is

the result of the two normal steps, the estimated error vector is

err = (yn+2- n+2 ) / 1 5 . 0

which is added to yn+ 2 to improve the accuracy. This error vector is used

to control stepsize based on the test outlined in Section IV-C, namely, let

bnd eps X rnax(y n q)

E-Z

A



then

I. If err > bnd in any component, halve the stepsize (if allowed)
and retry.

2. If err < bnd/150. 0 in every component set h = min (stepmax, 2h)
for the next step.

E-4. HAMMING PREDICTOR CORRECTOR

Once four back values have been created using Eq. (E-2), the following

formulae are used at each step (primes indicate derivatives).

Pn+ = Yn-3 + 4h(Zyn' - Yn-I + 2yn- 2 )/3

mn~ Pn+I - 112(Pn Cn)/121
n = ~nI'~ n - cn)/2

c+l = [9Yn- y 2 + 3h(m' 1 + 2 y' - Yn'I ) ] /8

Yn+1 C n+i + 9 (Pn+l - cn+l)/121

Stepsize control is based on the vectors err and bnd, where

err = 9 (Pn+l C +l)/IZ1

bnd = eps max(yn+Z, q)

1. If err < bnd/100 in every component, attempt to double the
stepsize.

2. If err > bnd is any component, halve the stepsize if allowed.

If interval halving is required, the required back values for y are created by

interpolation and the derivative values by calling the derivative routine.

Specifically, the formulae used for the interpolation of back values are

[n-y/2 = + 72n- + llyn-2 + h(-9yn' + 36yn_1 + 3y'_2)J/128.

n-3/2 "[lyn + 72y + 4 5 y 2 - h(3y' + 3 6 y_- 9y_ 2 )]/128.

E-3



The difference pn - c from the previous step is divided by 32 to account for

halving, multiplied by 32 to account for doubling, and set to zero following

an RK4 restart.

Stepsize doubling is only attempted if err < bnd/100 and the number of

successful predictor-corrector steps has been at least

1. 3 after a RK4 restart or halving

2. 2 after a successful doubling

3. 4 after a doubling failure

E-4



APPENDIX F

SPECIAL GASES: MULTIPLE RUNS AND LARGE SIMULATIONS

F-i. Multiple Runs .. ........ ........... ...... F-i

F-2. Using ESP for Large Simulations. .. ........ ..... F-4

mc

OZ r



APPENDIX F

SPECIAL CASES: MULTIPLE RUNS AND LARGE SIMULATIONS

F-i. MULTIPLE RUNS

F-I-a. Multiple Runs Varying Run-Time Data Cards

If a series of job runs is to be made in which the only changes from

one run t, the next are in items which can be input on run-time data cards,

then any number of runs can be made as one job. The necessary run-time

cards are simply stacked in sequence, according to the following rules:

0 IVs, PARs, SWMEMDATA, Qs, EPS, and all other run
time data cards except SWMEMSET retain their values
until they are reset by the user's program or on a new
run-time card such as ',IV or *PAR.

* *SWMEMSET, if used, must be redefined for each run
since it is changed during execution.

* Each -,RUN card produces reexecution of the program as
soon as it is encountered, so must always be the last run-
time card of a case.

0 A set of *GRAPH cards must follow each -,"RUN from which
plots are expected.

EXAMPLE:

';ENDIC
':-IV 0.5 Y3=0.01 $
"PAR 5.0 3. 14 57.6 10.0 $
"SWMEMDATA First run, with plots.
1 1.0 2.0 0.7 0.7 1.0 $
,SWMEMSET 1 $
'.EPS ALL=I.OE-I0 $
_:RUN 3 0. 1.0 100. $
,',GRAPH 1 3 Second run: reset SWMEM in
*PAR 10.0 P4=20. 0 $ saturation; change PARs, all
SWMEMSET 1 $ others the same; no plots.

:RUNJ0 3 0.0 1.0 100. $ Third run: reset SWMEM in
'"IV 0.1 0.1 0.1 $ saturation, change IVs, use
'-'SWMEMSET 1 $
*~RUN 3 0. 1.0 100. $ PARs from second run, all

*GRAPH 2 3 others from first, make plots.

F-i



F-i-b. Multiple Runs with the Same Run-Time Data Cards

Sometimes the only changes from run to run are in the data read

from the user's file (see case below) and the user has a rather lengthy list of

run-time cards (for example, lengthy *GRAPH cards) which he prefers not to

duplicate for each of the stacked cases. This can be avoided in the following

manner:

0 Use a -,-RETURN card as the last run-time card, after *RUN
and all ;',GRAPH cards.

* Have ICCOMP read the data from the user's file and terminate
program execution when all data is exhausted.I Write the MAIN program, being sure to declare the user's

file on the PROGRAM card, and include logic to backspace
TAPE12 (this is the file on which run-time cards reside
during execution) after each case exactly as many command
cards as are needed for one case and then loop back to the
call to ESP. (If all * command cards are used for each case,
TAPE 12 may be rewound instead of backspaced.)

F-I-c. Multiple Runs Varying Data to be Read In by User

If the user has data decks he wishes to read in from ICCOMP and he

wants to stack up a number of cases, he may use the same stacking of run-

time cards as shown in the above example, but must also do several other

things:

* Either stack his data cards for each case immediately
following the *RUN to which they apply (see Section VII-E)
or place all of the data on a separate file before running the
ESP job and declare this file on the PROGRAM MAIN card
by writing his own PROGRAM MAIN.

* Read the data in from ICCOMP by means of READ or
NAMELIST statements. [If he plans to test for the end of
data for a given case by using IF (EOF.... he must be sure
to write EOFs on his data file when he creates it, by using
the FORTRAN ENDFILE n between data sets.]

F-l-d. Making Plot Overlays of Data from Multiple Runs

Normally the tape containing the plot data is always rewound

whenever a *RUN card occurs. However, by using *RUNC in place of *RUN

for cases after the first, the user may cause subsequent plot information to be

written onto the file following the plot data from the previous case(s). To
retrieve this new information for plotting the user must specify the appropriate
case number in parentheses following the *GRAPH.

F-2



EXAMPLE:

-MAXPLOTS 25
'-RUN 12 0 1 10 $
"'PAR P86 = 34.5 $
*RUNC 12 0 1 10 $
-PAR P72 = 12.5 $
-RUNC 12 0 1 10 $
-GRAPH 1 2

PRINTER PLOT OF DATA FROM FIRST CASE
-GRAPH (2) 1 2

PRINTER PLOT OF DATA FROM SECOND CASE
*GRAPH 1 3 TYPEF

FILMPLT OF DATA FROM CASES 1-3
*GRAPH (2) 1 3 TYPEF OVERLAY
*GRAPH (3) 1 3 TYPEF OVERLAY

F-1-e. Running the Solution Backward and Forward

Boundary value problems and other problems where it is desired to

have the capability of running the independent variable in either direction

may be handled by having one PAR, say PAR(99), be +1.0 for forward solu-

tion and be -1.0 for backward solution. Thus use

T = PAR(99) * T

Expressions defining the
derivatives in DY

T = PAR(99) * T

DO n i=l, neq
n DY(i) = PAR(99) * DY(i)

in the derivative routine and an arrangement such as the following for the

run time cards:

*PAR P99 = 1.0 $ I
*RUN 3 2.0.1.0 $ 10.0 $

*RN 3 - 0 - 0.1.0 $ backward solution

It will also be necessary to copy DY into YO in ICCOMP by including:

COMMON/BASIC/TO, TF, TP, YO(100), YPRNT(100), DY(100)

F-3

K L



F-2. USING ESP FOR LARGE SIMULATIONS

F-2-a. Maximum Dimensions

In general, any combination of ESP variables and special facilities

may be used within one program. However, each of the following items is

limited to the total number indicated:

Derivatives: 100, whether defined as DYs or in
*BLOCK form.

Discontinuities: 150 total

50 defined as -SWTCH
50 defined as -SWMEM
50 defined as EVENTS

Print Variables: 60 defined by *PRINT plus
any number of variables that are user-
formatted.

Plot Variables: 100 if using PLOT and *GRAPH or
any number if user writes his own plot
file and uses other means of plotting.

Parameters: 100 stored and passed by PAR array
plus any number sto-.ed and passed by
user.

F-2-b. Maintaining Flexibility

Since especially large simulations often require changes and revi-

sions, it is highly desirable to structure them in a manner which makes

additions and deletions as painless as possible. Below is a suggestion for

one method of maintaining flexibility in numbering and referencing the deriva-

tives, which the user may find adaptable to his program.

The basic goal is to start with a structure which eases the problems

associated with the inevitable changes required. The approach suggested

here is to modularize and to use pointers such that the modules have maxi-

mum independence.

F-4



r t

0 Define a common block containing two arrays, each having
at least as many words as there are modules, e.g.,
COMMON /IPINT /IPOINT (50), N LWCAL(50)

* Set NLOCAL(1) equal to the number of derivatives defined

in the Ith block.

* Set IPOINT(1) = 0 and define the remainder of the IPOINTs by

IPOINT(I) = IPOINT (I-I) + NL(CAL (I-I)

for I=2 ....

0 Within the Ith module (it need not be a separate subroutine)
define the DYs by, say,

LC = IPOINT (I)
DY (L(OC + 1) =
DY (L(C + 2) =

With this scheme one need only know the correspondence of physical

variables within a module. Thus, if the angular displacements of body 5 were

the fourth, fifth, and sixth variables within module 5, they could be used

anywhere else by

IAC = IPOINT (5)

ADI Y (L4C + 4)

rADZ = Y (LOC + 5)

AD3 = Y (LOC + 6)

This approach may also be useful if the number of Y's varies with

the input such as is encountered in structures programs.

F-2-c. Production Runs with a Compiled Program

If produc-.ion runs are to be made with an ESP program which

requires considerable time for PRECOMP, WHELP, and/or FTN compilation,

it may be desirable to create a binary version of the program and a separate

TAPE 12 file so that runs can be made without recompilation. This may be

done either with cards or files via the following steps:

F-5

SA



* Using the usual control cards for an ESP (and WHELP)
program, compile the source program and either punch
out the LG file (binary) or catalog it as a permanent file.

" Add to the run-time data cards those cards normally written
by PRECMP, namely, -:"SWTCHES, , SWMEMCNT, and
*HEADINGS, so that the run-time data section looks like this
(These cards also may be used as a deck or put on a perma-
nent file.):

*SWTCHES n [where n is actual number
of :SWTCHs used. ]

-:SWMEMCNT n [where n is actual number
of ',-SWMEMs used.]

*:HEADINGS name 1 .. , name $ [where name 1 ... name
Im Imare actual print headings

specified in -PRINT state-
ment. If *PRINT is not
used, this card is unneces-
sary.]

(Any optional run-time cards, such as -'PAR, *IV, etc.)

'RUN... [usual format]

4-GRAPH... [usual format]

*-RETURN

To make runs:

* If the compiled program and run-time cards are on files,
simply attach the program file and call it LGO, attach the
TAPE1Z file and call it TAPEI2, and then execute LGO.

F-6



Example:

ATTACH(LIB1, 2NEWRESP)

ATTACH(LIB2, 3FTNPLOTLIB)

LIBRARY (LIBI, LIB2)

ATTAGH(LGO, 2BINARYPRG, ID=VAPI85)

ATTACH(TAPE12, ZTAPE 12, IDzVAP185)

LGO.

0 Alternatively, the binary card deck and the run-time cards

may be used in the following setup:

ATTACH(LIB1, ZNEWRESP)

ATTACH (LIB2, 3FTNPWJTLIB)

LIBRARY (LIBi, LIBZ)

COPYS (INPUT, LGO)

COPYS (INPUT, TAPE12)

REWIND(TAPE12)

LGO.

7-8-9

[Binary deck of user's program]

7-8-9

[1Run-time cards as shown above]

t 6-7-8-9

F-7



APPENDIX G

DEBUGGING SUGGESTIONS

G-1. Termination During PRECOMP .... ............... .... G-1

j G-2. Termination near Beginning of Execution ........... ... G-1

G-3. Time Limit During Starting Procedure ............. .... G-1

G-4. Execution Occurs but Printout Is Zero or Inaccurate . . G-I

G-5. Discontinuities Are Not Working Properly .... ......... G-2

G-6. "Ill-Conditioned System" Message ... ............. .... G-Z

Mm
w
C

z

C
-



APPENDIX G

DEBUGGING SUGGESTIONS

G-I. TERMINATION DURING PRECOMP

Check control cards.

Check deck structure.

Look for diagnostic message at end of listing.

Check card formats for such items as required blanks and $s.

If Precompiler reads off END-OF-FILE, check for $ terminators,
especially on *PRINT card.

G-2. TERMINATION NEAR BEGINNING OF EXECUTION

Does NEQ on run card agree with highest numbered derivative?

Is every DY(i) (i _ NEQ) defined, even if just set = 0?

Check derivative equations carefully.

Check stepsize and any stepsize limits you may be specifying.
[It may be helpful to print out the stepsize (H). I
If system seems to immediately go unstable, check HMIN (see
Appendix G-6).

G-3. TIME LIMIT DURING STARTING PROCEDURE

Try running the program using all Runge-Kutta integration.

Reduce the print interval to obtain more printout.

Print the stepsize, H, in order to monitor its behavior.

Set HMIN > 0., which causes integration to continue by accepting
Y(i)'s in spite of errors.

Check equations for a very small or 0. value of DY coupled
with a YO which is also very small or 0. In this situation the
error constraints may be unduly difficult to satisfy, and increasing
the corresponding Q(i) may alleviate the problem.

G-4. EXECUTION OCCURS BUT PRINTOUT IS ZERO OR
INACCURATE

Check PARs, IVs, and all other inputs as they are printed
initially.

G-I



Are you attempting to pass time-dependent variables as PARs?

Have you defined all output variables in OUTPUT, either by
computing them there or passing them through common blocks?

Check each subroutine to make sure referenced variables are
defined.

G-5. DISCONTINUITIES ARE NOT WORKING PROPERLY

Have you introduced discontinuities only as SWTCHs or SWMEMs
or by using FIRSTP flag?

Are switch inputs properly defined? See section on discontinuities
to review restrictions.

Are the allowable timing errors (HSW, HSWM, HSWE) suitable
to your problem?

Do you have switches driving switches directly? (Review Section V-E)

G-6. "ILL-CONDITIONED SYSTEM" MESSAGE

This generally results from one of the following:

Errors in derivative equations

Discontinuities occurring that are not at switch times

Smooth functions which suddenly change quickly with no switches
occurring

Suggestions for resolving this prcblem are as follows:

Check derivative equations for coding errors.

Check allowable errors (EPS and Q) to see if they are realistic
for your problem.

Consider adjusting HMIN (default = 0): An HMIN > 0 will cause~acceptance of Y's in spite of errors whenever H < 2. 0 '-" HMIN.

This has the effect of forcing integration past rough spots--
useful in some cases but causing instability in others.

See Section IV-D-1.

G-24

-Gr- -



APPENDIX H

WHELP

H-I1. Introduction: How WHELP Works .. ....... ...... H-1

H-2. Fixed Dimension WHELP .. .. ........... ..... H-2

H-3. Variable Dimension WHELP .. ...... ........... H-13



APPENDIX H

WHELP

H-I. INTRODUCTION: HOW WHELP WORKS

WHELP is a higher-level language preprocessor, which translates

normal (mathematical) engineering equations involving scalars, vectors, and

matrices into FORTRAN statements. It consists of two parts: a preprocessor

which converts the WHELP equations to FORTRAN statements, and a library

of highly efficient subroutines which perform the actual matrix operations.

WHELP offers two big advantages: speed and accuracy. It saves

coding time by permitting matrix equations to be coded much in the same

form as they are written (instead of as a series of subroutine calls); it helps

to reduce programmer errors since the user's code is simpler than other-

wise required and maintains a close resemblance to the equations it repre-

sents; and it facilitates debugging because any equation or coding errors that

do crop up are easier to find.

For example, the equation

+where A, B, C, D, and E are

3 x 3 matrices

which normally the user would have to code as a series of subroutine calls,

can be coded in WHELP with the one card:

A = B, *C +D*E $

WHELP functions by first setting up a list of those variable

names (scalars, vectors, and matrices) which the user has declared as

WHELP variables. It then searches the user's coding until it recognizes

one of those variables on the left-hand side of an equal sign. This is inter-

preted as the signal that the right-hand side is a WHELP (vector-matrix)

H-1



expression and must oe translated to FORTRAN. WHELP then scans the

expression up to the $, comparing each variable to the list of declared

WHELP variables, to ascertain which represent scalars, vectors and

matrices, and to determine their dimensions. Using the proper dimensions

it then interprets the operator symbols (+, ', etc.) to generate calls to the

appropriate subroutines to perform matrix multiplication, addition, trans-

position, etc. The end result of the WHELP processor is an executable

FORTRAN program, in which the user's matrix equations will appear as

comment cards followed by the subroutine calls needed to implement them.

When this program is then compiled and executed, the needed matrix sub-

routines will be loaded from the WHELP library. The user, therefore, has

two tasks to perform: declaring and dimensioning those variables which will

be WHELP variables and writing his vector-matrix equations in a form that

WHELP can interpret.

Basic WHELP assumes vectors and matrices of fixed size, but

WHELP may also be used with arrays of variable dimensions. The discus-

sion below will start with the simplest application, fixed-dimension WHELP,

and then proceed to a description of variable dimension WHELP and to some

special time-saving features which have been added to WHELP.

H-2. FIXED DIMENSION WHELP

A WHELP variable is defined to be any vector or matrix which

will be referenced as a vector or matrix in a WHELP expression or any

scalar which is to receive the result of a WHELP computation. Any scalar

or single element of an array which will b, referenced only on the right-hand

side of a WHELP expression need not be declared as a WHELP variable.

There are two types of WHELP statements: declaration state-

ments and WHELP equations. WHELP declaration statements always begin in

column 1 with an asterisk (*) followed by the appropriate name (SAMESIZE,

IDECLARE, or INFORM: See below) and entries are terminated by a dollar

sign ($) preceded by at least one blank. WHELP equations always begin witha

H-2



.

declared WHELP variable starting in column 7 or later followed by an equal

sign and the appropriate expression and are terminated by a dollar sign ($)

preceded by at least one blank. Both may extend through column 72 and be

continued on the next card. No continuation marks of any kind are used.

The statements are assumed to continue until the $ terminator.

H-2-a. Declaring WHELP Variables

Every scalar, matrix, or vector which is to be used as a WHELP

variable must appear on a declaration card within each (sub) program in which

it will be so used. A declaration card is a card started in column 1 by

*IDECLARE, *SAMESIZE, or *INFORM and terminated by a $ preceded by at

least one blank. Alternative forms, which are both translated into REAL

statements, are

-IDECLARE item item... item $]

where

name

item = name (n)

name (n, m)

n (and m) are integer constants specifying the number of rows (and
columns) in the array

and

*SAMESIZE n m list $

where

n (and m) are integer constants specifying the number of rows (and
columns) in all arrays named in the list. The parameter n
must be present, but m may be omitted, in which case all
arrays named are singly subscripted.

list is a list of names, separated by at least one blank, which
are to have the dimension(s) given.

H-3

A



EXAMPLES:

"SAMESIZE 3 X Y Z W $
-IDECLARE F(6,3) G(12, 12) D H(6)

:'SAMESIZE 12 12 A B C E $

These will be translated by WHELP into the FORTRAN statements:

REAL X(3), Y(3), Z(3), W(3)

REAL F(6,3), G(1Z, 12), D, H(6)

REAL A(12, 12), B(12, 12), C(12, 12), E(12, 12)

Note that all variables will be typed real and that these are the only state-

ments needed to dimension these variables, and in fact the variables must

not be dimensioned elsewhere. Also note that blanks are the only delimiters

between list items: do not insert commas. Extra blanks may be inserted

between items.

Note:

1. A name is a string of 1-7 characters (1-6 characters for IBM)
acceptable to FORTRAN as a variable name.

2. Embedded blanks are not allowed in names, since blanks are
used as delimiters between items, but extra blanks may be
inserted between items to improve readability.

3. TEMS and CONSTS are reserved names.

4. Since both 'SAMESIZE and ",-IDECLARE cards are translated
into REAL statements, they must precede any executable
statements.

5. WHELP variables must be declared in each routine in which they
are to be used as such.

6. Scalar variables may be used anywhere within WHELP expres-
sions, but if they appear on the left-hand side of a WHELP

*, expression (for example, as the result of a dot product), they
must be declared as WHELP variables.

H-4

'A



A third form of declaration statement, -INFORM, permits

a submatrix to be treated as a WHELP variable. That is, the variable which

will appear in a WHELP expression may be a subset of a vector or matrix,

instead of the entire vector or matrix. *INFORM works much like

*SAMESIZE except no FORTRAN declaration is written out. The character

strings listed on the *INFORM card are simply added to WHELP's list of

"recognized" WHELP variable names, and the assumption is made that these

variables are dimensioned elsewhere by *SAMESIZE, *IDECLARE, COMMON,

REAL or DIMENSION statements. The format is

,INFI)RM n m list $

where

n (and m) are integer constants specifying the number of rows (and
columns) in all arrays named in the list. The parameter
n must be present, but m may be omitted, in which case
all arrays named are treated as vectors.

list = item I item2 item .. item

where

name The Is represent a fixed location for the
item-- name (J) starting point of the subset. They could
i mname (1, L) also be any other constant within the maxi-

name (1, 1, K) mum array size constraints, as long as the
subset referenced consists of elements that
are stored contiguously in the full array.

name must be dimensioned elsewhere within the routine and the
subscripts J, L, and K denote which dimension of name
is to be varied in referencing subsets of name.

Note:

1. Item is restricted to 10 characters total.

2. Items must be written without blanks since blanks separate items.

3. Only a totally contiguous subset of an array may be declared a
WHELP variable in this manner. (See H-3-a, DataStorage and

H-5.1
1-t-



Transmission.) For example, the columns of a 3 x 3 matrix

BMAT could be declared on an *INFORM card as:

' INFORM 3 1 BMAT(1,J) $

but not the rows:

*INFORM 1 3 BMAT(J, 1) $

because the data in a matrix row is not stored contiguously. In
other words, BMAT(J, 1) is the starting location for an array of
the 3 next elements in storage, and since FORTRAN always
stores a matrix such as BMAT by columns, a reference to
BMAT(J, 1) where J=Z would give the following:1 ] [2

if BMAT = Z 5 8 then BMAT(J, 1) =[
13 6 9 [

EXAMPLE (in WHELP code):

COMMON/BLOCK1/B(5, 5)
REALMM(5,5,3) A(5,5)

*IDECLARE M(5, 5) X(5) $
*INFORM 1 X(J) $
*INFORM 5 M(1, L) $
*INFORM 5 5 MM(1, 1, K) $
C STORE THE DOT PRODUCT OF THE JTH COLUMN IN X(J).

DO 1 J=1, 5
L=J
X(J)=M(1, L) . M(1, L) $

1 CONTINUE
C ADD VECTOR X TO THE LTH COLUMN OF M.

L=2
M(l, L)=X+M(1, L) $

C STORE M/K AS THE KTH SUBMATRIX OF MM.
DO 2 K=I, 3
MM(I, 1,K)=M/K $

2 CONTINUE
C USE INFORM TO DECLARE PREVIOUSLY DIMENSIONED
C VARIABLES.
*INFORM 5 5 A B $

B=M+IDENT(A) $

H-6



Note the following points in the example above:

1. 'cINFORM I X(J) $ tells WHELP to treat the string X(J) as a
WHELP scalar. The I must appear in the *INFORM statement.

2. *INFORM 5 M(I, L) $ tells WHELP to treat the string M(I, L)
as a 5-vector.

3. ,"-INFORM 5 5 MM(1, 1, K) $ tells WHELP to treat the string
MM(l, 1, K) as a 5 x 5 matrix. The program is storing 1
5 x 5 matrix in each of the 3 planes of MM.

4. The maximum dimensions of all -.'INFORM-dectared variables are
given elsewhere by DIMENSION, REAL, CGMMON, *IDECLARE,
or :SAMESIZE statements.

5. The *INFORM card places the total character string (for example
MM(I, 1, K)) in the table of recognized variables. Thereafter,
the total string should be thought of as a FORTRAN "name";
that is, its spelling is sacrosanct and no changing or substituting
of variables (for example K) is allowed, and it may be referenced
only by the full character string exactly as it appears on the
*INFORM card.

6. Just as any WHELP scalar which will appear on the left-hand
side of a WHELP expression must be declared on an -IDECLARE
card, any element of a matrix which is to be used as a scalar on
the left-hand side of a WHELP expression must be declared on an
'INFORM card with dimension 1, as in the example,
*INFORM I X(J) $.

7. Since -'INFORM does not result in the writing of any dimension
statements (and in fact will appear only as a comment card in
the FORTRAN listing of the program), it may be used anywhere
within a (sub)program as long as it precedes WHELP statement~references to the variables it declares.

8. -*INFORM may be very conveniently used when it is desired to
declare variables which have already been dimensioned else-
where. (Use of -SAMESIZE or 'IDECLARE in the same situation,
since they result in REAL statements, would produce double
dimensioning, not normally allowed in FORTRAN.)

H-7



H-Z-b. Writing WHELP Expressions

A WHELP vector-matrix expression always begins with a

declared WHELP variable and ends with a $, but otherwise may be written in

much the same form that it is written mathematically, simply by using the

symbols given in the table below for the desired matrix operations. For

example, one might wish to evaluate a variable after several cc:rdinate trans-

formations by

IXNEWI =c[A] [B] [C] IXOLDI

or estimate a correction term by

Ideixi = [ TA ]-  ATfr1

Using WHELP, these are coded

XNEW = ALPHA-," A;:-B*C'"XOLD $

DELX = INVERSE (A, -A)-A, -."R $

and will appear exactly like this on the first listing of the program. On the

FORTRAN file listing of the program produced by WHELP, all WHELP

expressions will be rewritten as comment cards, immediately followed by

the generated FORTRAN calls (see Calling Sequences, Appendix H-2-b-ii).

Note that in the example above, the vectors XNEW, XOLD, R

and DELX and the matrices A. B, and C must have been previously declared

on a *SAMESIZE, 'IDECLARE, or *INFORM card.

I
.H-



Note also that any character string appearing in a WHELP expres-

sion which is not identical to a WHELP declared character string (ALPHA in

the example above) will be treated as a scalar. That is, if XOLD is a declared

WHELP vector, but the character string X0LD (I) appears in a WHELP

expression, XOZLD (I) is treated as a scalar. In general the acceptable string

length is 1-10 characters if the first character is a letter, but is not limited

for numbers. However, since a longer character string is sometimes

inevitable, for example ZETA (I + 1, 2 -' J), WHELP will use the correct

value for ZETA (I + 1, 2 . J) but will substitute a shorter character string

for the too long one when it writes out the FORTRAN file. In any case, the

total character string must not exceed 40 characters, or information will be

lost.

A WHELP equation is evaluated according to the hierarchy of the

operators, given in Table H-2-b-i. In expressions with like operators,

evaluation occurs from left to right. However, as in standard FORTRAN

expressions, parentheses can be used to override the usual sequence of

evaluation. Blanks may be used between items and operator symbols to

improve readability and the expression may extend up through column 72 and

continue onto the next card with no continuation marks. The end of the

expression must be indicated by a dollar sign ($) preceded by at least one

blank.

H

H-9



1.-'

U)"

0H

• : E

0 0 0 0 0o

a) 0

U

oco.... U)

vt000 ... O

U)~ 0

0

00 a-

x u

U) *.- . ,.

° ' 1"  "  -X: -%

u + F--q

0

• .

VV

0 g. H

4o 0 o 0 24 P ,
44 -4

41 41

H 4c1 0 V j 41

-l. .,H . L . . ...

H-1

H-10



H-2-b-ii. Calling Sequences of WHELP Matrix Routines

Because it may on occasion be desirable either to call a WHELP

subroutine directly or to know its calling sequence for debugging purposes,

below is a list of the WHELP operators in use and the subroutine calls which

will result.

Operation Subroutine Call

C=A+B CALL MATADD(A,NRA,NCA,B, NRB,NCB,C,NRDIMA,
NRDIMB, NRDIMC)

C=A-.B CALL MATSUB(A, NRA, NCA, B, NRB, NCB, C, NRDIMA,
NRDIMB, NRDIMC)

C=A-'B CA LL MATMA T(A, NRA, NCA, B,NR B,NC B,C, NRDIMA,
NRDIMB, NEDIMC)

T
C=A BCA LL TRNSML(A, NRA, NCA, B, NRB, NCB, C, NRDIMA,

NRDIMB, NRDIMC)

C=Scalar-,B CA LL SCAMAT (SCALAR, B, NRB, NCB, C, NRDIMB,
NRDIMC)

C=B/Scalar GA LL SCAMAT(I. 0/SCA LAR, B, NRB, NCB, C, NRDIMB,
NRDJIMC)

C=AT CA LL TR NSPS (A, NRA, NCA, C)

B=0. CALL MATZRO (B, NRB, NCB, NRDIMB)

C=A. B CA LL TRNSML(A, NRA, NCA, B, NRB, NCB, C, NRDIMA,
NRDIMB, NRDIMC)

C=AxB CALL CROSS (A, B, C)

B=A CALL MOVE (A, NRA:'-NCA, B)

B=-A CA LL NE GA TE(A, NRA ---NCA, B)

A=INVERSE(A) CA LL MA TINV (A, NRA, 0, 0, DET, NR DIMA)

A=IDENT(A) CALL IDENT (NRA, A)

H -



where: A, B, and C are WHELP arrays of conformable size for the opera-

tions indicated.

NRA and NRB are the number of rows of A and B being used.

NCA and NCB are the number of columns of A and B being used.

NRDIMA, NRDIMB, and NRDIMC are the fixed number of rows for

which A, B, and C are dimensioned.

DET is the determinant of matrix A.

H-2-c. Special Features

0 A=O. $ This zeros out A where A is any WHELP variable.

9 The remainder of a card following a dollar sign may be used
for comment. For example:

A = B + ERROR $ ADD ERROR VECTOR

* WHELP variables may be set equal to strings of FORTRAN
expressions. The format is

Svariable =$ element 1 $ element 2 $ ... $ blernent $$

whe re

a constant

or
element any legal FORTRAN expression

or
'k (where k is an integer constant denoting
how many times the expression following is
to be repeated)

H-12



EXAMPLE:

IDECLARE M(2,2) $

M = $ SIN(T) $ COS(T) $ 2 $ ALPHA + R $$
produces the result:

M(1, 1) = SIN(T)

M(2, 1) = COS(T)
M(I,2) = ALPHA + R
M(2, 2) = ALPHA + R

Note:

I. Element may not be a WHELP expression.

2. Matrix variables are stored by column and therefore must be
listed by column.

3. Like the FORTRAN DATA statement, no elements may be
skipped and the number of elements must not exceed the total
size of the variable.

4. When used with variable dimension WHELP (see below), data
will be packed into the first N",-M elements of an array.

H-3. VARIABLE DIMENSION WHELP

WHELP may also be used with matrices having variable dimen-

sions: the WHELP equations are written in exactly the same manner as they

are for fixed dimension WHELP, and special forms of -SAMESIZE, -IDECLARE

and 4*INFORM are used to declare the variable size matrices. These special

forms will be explained below, but since successful use of variable dimension

WHELP depends upon an understanding of how WHELP stores and transmits

data for matrices of variable dimensions, this will be discussed first. It is

strongly urged that the user carefully observe the constraints on data storage

imposed and implied for variable dimension WHELP and also that thorough

* printout and testing be done during program development.

H-13
S.i



H-3-a. Data Storage and Transmission

We are accustomed to thinking of matrices in FORTRAN as having

several dimensions, but FORTRAN does not actually store a matrix in a two-

dimensional "slot": It stores it, column by column, in a continuous string.

Thus a simple two-dimensional matrix MAT(3, 3), which we represent

mathematically as

Z. 5. 8.

3. 6. 9.

is in fact stored like this:

MAT(1) = 1.

MAT (2) = 2.

MAT (3) = 3.

MAT(4) = 4.

MAT (5) = 5.

MAT(6) = 6.

MAT (7) = 7.

MAT (8) = 8.

MAT(9) = 9.

As long as full matrices are used with WHELP (or FORTRAN), the only

commonly encountered implication of this is in the use of data statements to

set matrix elements, where one must remember to list data by columns rather

than by rows.

Furthermore, when we wish to deal with some variable size subset of a

matrix, for example, if we want to use the above MAT(3, 3) as MAT(N, M)

where N = 2 and M =2, then we are accustomed to thinking of our data storage

like this:

H-14

N'



MAT (N, M) 1. 4. 7.- or MAT (N, M) =MAT (1, 1) 1::. 5 8] MAT (2, 1) = 2.
6. 9.MAT(1, Z) =4.

MAT(3, 3) MAT(2, 2) = 5.

where MAT(N,M) occupies the first 2 x 2 positions in MAT(3,3).

WHELP, however, assumes that the data in MAT(N,M) is stored

in the first N x M locations of MAT(3, 3) as follows:

MAT (N, M) 4.I 7.] o r MA T(N, M) =MA T(1) = 1.

2. 5. 8. MAT(Z) = 2.

3. 6. 9.] MAT(3) = 3.

MAT(3, 3) MAT(4) = 4.

In other words, WHELP always assumes that the N x M elements

of a variable dimension matrix are stored "packed", one immediately after

the other, by columns, in the storage space allotted for the full maximum size

of the array. Whether it is operating on a matrix or storing the results of an

*operation into a matrix, it will use the first N x M elements, not the first N

rows and M columns.

Therefore, the user must always be certain that arrays to be

operated on are stored "packed" and that if WHELP arrays are to be printed

or otherwise used in FORTRAN format, they must be "unpacked" by the print

statement or some other means. Two subroutines are included in the WHELP

library to aid the user in changing from FORTRAN matrix format ("unpacked")

to WHELP matrix format ("packed") and vice versa. They are explained

below in Appendix H-3-c.

H- 15



H-3-b. Declaring Variable Dimension WHELP Variables

Special forms of *SAMESIZE, *IDECLARE, and *INFORM

accomplish the task of activating variable dimension WHELP. The formats

are the same as for fixed dimension WHELP except that n and m (row and

column dimensions) can take either of two forms:

integer name/integer constant
n(m) = or

integer constant

where

integer name must be 1-3 characters, beginning with a letter

integer constant is the maximum size

EXAMPLES:

*SAMESIZE N110 M/20 A B $

-SAMESIZE Z0 M/10 C D E $

*IDECLARE A(N/10, M/Z0) B(10, M/20) C(5, 5) $
*IDECLARE Z X(K/30) Y(K/20) $

*INFORM N/Z0 M/20 FM(I, 1, K) $

*INFORM L/Z0 PT (1, J) $

The following statements apply to all three declaration forms:

I. FORTRAN subroutine calls generated by WHELP will always
use the letters (if any) and result in variable-dimension
computations, assuming data to be used is packed and
producing packed results.

2. The numbers given as dimensions determine the maximum
size of the arrays declared.

3. WHELP checks to see that the maximum dimensions of
arrays are conformable for the operations indicated in an
expression, but it does not check the variable dimensions
to ensure they are less than the maximum dimensions nor
does it check to ensure that they result in conformable
matrice s.

R-16

\, I



Beyond this lie some important differences in how the three

statements may be used, due to the following facts:

1. FORTRAN requires that the maximum size of an array
must be stated before any subset of the array may be
referenced.

2. If an array is to have variable dimensions within a sub-
routine, then the integer variable names representing
those dimensions, as well as the array name, must be
part of the argument list of the subroutine.

3. *SAMESIZE, *IDECLARE, and *INFORM are all translated
differently by the WHELP precompiler:

*SAMESIZE N/10 M/20 A B $
produces

REAL A(1O, 20), B(10, 20)

whereas

*IDECLARE A(N/10, N/20) B(10, M/20) $

produces

REAL A(N, M), B(10, M)

and

*INFORM N/20 PS(, J) $

produces

(no declaration statement)

Based on these differences, some general (though by no means

comprehensive) guidelines for use of *SAMESIZE, *IDECLARE, and

*INFORM may be suggested:

H-17

AL



1. *IDECLARE may not be used in a main program. (Use
*SAMESIZE.)

Z. If the array name and its variable dimensions are not among
the subroutines arguments, *-'IDECLARE may not be used to
declare the array in a subroutine.

3. *SAMESIZE may be used in any routine.

4. If an array has already been dimensioned within a routine by
any means, *INFORM may be used to declare the entire array
or any totally contiguous subset of it as a WHELP variable.
Remember, though, that the data may have to be packed if it
has been stored in FORTRAN format.

5. Use of *INFORM to declare variable dimensioned subsets of
arrays is extremely error prone due to the contiguity constraint
and shoull be Lied only with great care.

6.. Results should be checked carefully,. preferably on simple
test data, as many possible errors will not produce any
warnings, just bad results.

EXAMPLE:

PROGRAM TESTWH(INPUT, OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT)

*SAMESIZE N/5 M/5 A B C $

N=3

M =3

A = 0. $ ZEROES OUT FIRST N * M ELEMENTS OF A.

B = IDENT(B) $ CREATES N ORDER IDENT MATRIX, PACKED.

C STORE DATA INTO A IN PACKED FORMAT

A =$*3 $ 1. $*3 $ 2. $ 3$ 3. $$

C=A+B $

CALL VARDIM(A, B, C, N, M)

CALL VARDIM2(A, B, C, N,M)

END

H-18
i



SUBROUTINE VARDIM(A2, B2, CZ, N, M)

*SA MESIZE N/5 M/5 AZ B2 C2 $

C2 = A2 + B2 $

RETURN

END

SUBROUTINE VARDIMZ(A3, B3, C3, N, M)

*IDECLARE A3(N/5, M/5) B3(N/5, M/5) C3 (NI5, M/S) $

C3 = A3 + B3 $

RETURN

END

In this example C, C2, and C3 will all wind up with the same result,

packed into the first N '- M locations. Note that SUBROUTINE VARDIM

uses *SAMESIZE and SUBROUTINE VARDIMZ uses *IDECLARE, but

results are identical.

H-3-c. Packing and Unpacking Arrays

To aid the user in changing from FORTRAN matrix format

("unpacked") to WHELP matrix format ("packed") and vice versa, two

subroutines are included in the WHELP library. They are called by:

CALL FTOWLP(A, NROWS, NCGLS, NDIMA)

and

CALL WLPTOF(A, NR)WS, NCLS, NDIMA)

where

A is the matrix to be packed (unpacked)

NROWS is the variable row dimension

NCOLS is the variable column dimension

NDIMA is the maximum number of rows for which A is
dimensioned

H-19

; ., i ,, . . , : ,, . ' .. . , , -- . . .



EXAMPLES:

1. *SAMESIZE N/5 3 C D E $

C DEFINE ELEMENTS OF C IN FORTRAN FORMAT

C(l, l) = 1. $ C(1,2) = 4. $ C(I,3) = 7.

C(2,1) = z. $ C(2,2) = 5. $ C(2,3) = 8.

C(3, 1) = 3. $ C(3,2) 6. $ C(3,3) = 9.

C(4,1) = 0. $ C(4,2) = 0. $ C(4,3) = 0.

C(5,1) = 0. $ C(5,2) = 0. $ C(5,3) = 0.

N=3

C PUT C INTO WHELP FORMAT

CALL FTOWLP(C, N, 3,5)

C SET E = C(N, 3) X AN N X 3 IDENTITY MATRIX

E = C * IDENT(D) $

Notes:

a. In this example the elements of C are all defined in FORTRAN
format, so before C(N, 3) can be used in a WHELP equation,
the data must be packed into the first N x 3 elements of C.
IDENT(D) will be a packed matrix, as will matrix E since they
are the results of WHELP operations.

b. The packing operation will destroy values previously stored in
C(4, I) through C(4, 2). A subsequent unpack would leave
changed values in C(4, 1), C(5, 1) and C(4, 2).

Z. SUBROUTINE XYZ(A, N, M, NDIMA)

DIMENSION A(NDIMA, 1)

*INFORM N/Z0 M/3 A $

C PUT INTO WHELP FORMAT

CALL FTOWLP(A, N, M, NDIMA)

C FORM A * A-TRANSPOSE FOR A BEING N X M

A=A*A, $

C RETURN RESULT IN FORTRAN FORMAT

CALL WLPT F(A, N, M, NDIMA)

RETURN

END

H-20



Notes:

In this example matrix A was not a variable dimension WHELP

array in the calling program, so it comes to the subroutine un-

packed and returns unpacked, but must be packed in order for

the variable dimension WHELP equation to be executed correctly.

H 2

H-21



F,
CD

* I

1

.4,



REFERENCES

1. Hamming, R. W., "Stable Predictor-Corrector Method for Ordinary
Differential Equations, " JACM, Vol. 6, No. 1, January 1959.

2. Wilkinson, J. H., "Two Algorithms Based on Successive Linear
Interpolation, " Stanford University Computer Sciences Department,
Report No. TR-CS60, April 1967.

3. Ralston, A., "A First Course in Numerical Analysis, McGraw-Hill,
New York, 1965.

4. "IPD Computation Facility Computing Guide, " Revised Edition, IPD
Systems Programming Department, Engineering Science Operations,
The Aerospace Corporation, El Segundo, California, 1 October 1974
(not available outside The Aerospace Corporation).

5. "Scope 2. 1 User's Guide, " Revised Edition, Control Data Cyber 70/
Model 76 Computer System 7600 Computer System, Publication No.
60372600, Control Data Corporation, Arden Hills, Minnesota, March
1978.

6. L. F. Shampine and M. K. Gordon, "Computer Solution of Ordinary
Differential Equations, " Freeman and Company, San Francisco,
California, 1975.

I.-



z
0

1-



INDEX

Page

A

accuracy

of plotted data .............. ............................ 6-7
of printed values ........... .......................... 6-4, 6-5
of solution .......... ...................... 4-4 to 4-7, 4-9, 4-10
of switch timing ......... ........................ ... 5-16 to 5-19
See also .EPS, *Q, '.HSW, *HSWE, *HSWM.

ADAMS integrations .......... .......................... ... 4-4, 4-5

flowchart ............ ............................ D-16, D-17
equations ............ ............................... ... E-1

AUTO ................ .................................... 6-9

B

backward solution ........... ............................. ... F-3
BASIC (common block) ......... ........................... .... C-3
BLANK (common block) .......... .......................... ... C-4
"BLOCK ................................ 3-5 to 3-7

second order blocks ............ .......................... 3-6
examples .......... ............................ .2-4, 3-7

first order blocks .......... ........................... .... 3-5
examples ............. .............................. 3-7

boundary value problems ......... .......................... ... F-3
BUFFER ............. .................................. .... C-6

C

C (see CONSTS, *SWMEMDATA)
COLCNT ...... .................................. C-6

comment cardj, rules for use ......... ....................... A-
common blocks ............................................. C-2 to C-10

alphabetical list and contents ...... .................. .C-3 to C- 10

variables passed through ........... ....................... C-2
See also specific block name.

compiled program, making runs with ....... ................ F-; to Y
CONSTS ............. ....................................

See also ':-SWMEMDATA.
control cards

CDC
formats .......... ...........................
what they do . . . . . . . . . . . . . . . . . . . . . . .

J-1

.7A



AO0-AOSA 6 76 AEROSPACE CORP EL SEGUNDO CA ENGINEERING GROUP F/G 9/2

THE ECLECTIC SIMULATOR PROGRAM (ESP) USAGE GUIDE. CU)
MAY S0 E ft COFFEY, H J1 WERTZ FONYOI-79-C-ORBR

UNCLASSIFIED TR-GOG(9320)-I SD -YR-GO-21 NEEEEEE3



III 1 0 ~ III~5

OHI iI~",2 O

MICROCOPY RESOLUTION TEST CHART
NAT;ONAL BURE[AU OF STANDARDS-1963-)'



INDEX (Continued)

Page

IBM
formats. .. ...... .. . . ... .. .. .. .. .. .. . B-2 B-3
what theydo .. ... ........... .............. D-3

CROSS (subroutine). .. ....... ........... .......... H-11

D

* data files
as output..................... ..... 6-13 to 6-17

TAPE11l.. ..... ........... .......... 6-13 to6-16
user file. .. ........ ........... ...... 6-16, 6-17

example. ...... ............ .......... 6-17
a s input .. ........... ........... ........ 7-6, 7-7

DATE (subroutine). .. ............ ........... ..... D-9
deadband (see *-SWMEM)
debugging. .. ......... ........... ...... .... Gal,G-2
deck structure. .... ........... ............ ..... A-4

examples. ......... ........... .......... 2-1, 2-6
derivatives, defining ...... ........... ......... 3-1 to 3-7

alternatives. ..... ........... ........... .... 3-1
engineering blocks. .. ....... ...... ...... ..... 5 to 3-7
examples. ........ ............ ......... 2-4, 3-3
general rules .. ........... ............ ...... 3-2
number of .. ........ ........... .......... 7-1, 7-2
with WHELP. .. ........ ........... ....... 3-3, 3-4

example s. .... ............ ........... ... 3-4
DERIVS (subroutine) .. ....... ........... ........ 3-1, 3-2

calls to during switch processingo. .......... ..... 5-16, 5-17
example. .... ........... ............ ...... 2-8
format .. ...... ........... ............ .... D-6
printing from.. ... ............ ............. 6-12
when written ..... ........... .......... .... D-5

*DERIVS .. ........ ........... ............ ... 3-1
DIFTAB (subroutine) ...... ........... ............ D-9
dimensions (maximum). ........ .......... ........- 4
discontinuities .. ......... ..... ...... .... 48, 5 1to 5 19

accuracy control. ........ ........... ......... 5-18
debugging. ...... ........... ........... .... G-2
deteceting timing .. ....... . ......... .......... 5-16
printing at .................................................... 5-17, 5-18
sequence of events .. ... ........... ......... 5-15 to 5-17
several in series........ .......... .......... 5-17
See also *SWTCH, *SWMEM, *EVENT.

J-2



INDEX (Continued)

Page

discontinuous driving function (see *SWTCH)
discrete inputs. .. .......... ........... ...... 4-7, 4-8
DY. .... ........... ........... ... 3-1 to 3-4, C-1, C-4

E

*ENDDERIVS .. ... ........... ........... ....... 3-1
* *ENDIC (see *ICCOMP)

*END0UT (see *OUTPUT)
EPS. .. ....... ........... ........... ....... C-5
*EPS .. ...... ........... ........... ......... 4-3

example. ... ........... ........... ........ 4-4
ESPCT L(subroutine) .. ........... .............. 4-2, D-8

f lowchart .. .......... ........... ..... D-13 toD-15
ESPII (subroutine) .. ........ .......... ....... D-8, D-10

f lowchart .. .......... ........... .......... D-12
ESPLOT (subroutine).... ......... ........... ..... D-8
ESPPC (subroutine)

equations .. ........... ........... ...... E-3, E-4
flowchart .. .......... .......... ..... D-2Oto D-22
See also integration package, Predictor Corrector.

ESPPLOT (program) .... ........... .......... 6-13 to 6-16
example. ... ........... .......... ..... 6-15, 6-16

ESPRKZ (subroutine)

f lowcha rt. ...... ........... ........... D-18,D- 19
equations .. ......... ........... ...... E-1, E-2
See also integration package, Runge-Kutta.

ESPRK4 (subroutine)
f lowcha rt. ...... ........... ........... D-18, D-19
equations .. ........... ........... ...... E-2, E-3
See also integration package, Runge-Kutta.

EVENTS (subroutine) . .. ..... ........... .... 5-10, 5-11, 5-16

F

FILBUF (subroutine) .... ........... .......... .... D-9

files
*file usage for ESP without WHELP. .. ......... ........ B-4

file usage for ESP with WHELP. ...... ........... ... B-5
See also TAPEll1, TAPE1Z, TAPE15, data files.

FIRST P. ....... ........... ............ 4-7, 4-8, C-6

See also ESPRK4, flowchart.

3-3



INDEX (Continued)

Page

FIXSTP .. .. .......... ........... .... 4-3,4-6,4-8, C-7
flowcharts. .... ........... ........... ... D-10 toD-22

ADAMS. ...... ........... ............ D- 16,D- 17
flowchart conventions .. .... .................... D-11
ESPCTL. .. ....... ................. ... . D113 'to D-15
ESPII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D -
ESP package, overview .. ... ............ ......... D-l10
ESPPC .. .. ........... ........... .... D-2Oto D-22
ESPRK4(ESPRK) .. .. ......... ............ D- 18, D-19

formats, card
general rules. .... ........... ........... .... A-1
summary .. .......... ........... ....... A-2, A-3
See also specific card names.

FTOWLP (subroutine) .. ...... ........... ..... H-19 to H-21

GRAPH (subroutine) (see *GRAPH)
*GRAPH. ... .......... .................. 6-5 to 6-11

example s. .. ..... ........... ............ 2-4, 6-10
use in multiple runs .. .. ............ ......... F-1 toF-3

graphic output (see plotting)
GRIDggg. ... ...... ..... ...... ...... ...... ... 6-8

H

H...... ....... ....... .............. 4-2 to 4-6, C-7
See also stepsize.

Hamming (see integration package, predictor -corrector)
HEAD .. .. ........... ........... ............. C-10
*HEADINGS .. .......... ........... ......... 6-2,7-8
HHMA . .. ...... ........... ........... ...... C-4
HHMIN .. ...... ........... .......... ........ C-4
HMAX. ..... ........... ........... ...... 4-3, G-7
HMAXMN (common block). .. .... ...... ............. C-4
HMvIN ... ...... ...... ..... ...... ...- 3,o 4- 10, C-, G-2
HP ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .4-.3, C-7

*hprinti. .......... .... .......... ......... 7-1, 7-2
See also HP.

HSW .. ..... ...... ...... ...... ...... ...... C-5
*HSW .. .. ..... ..... ...... ...... ........ 5'-16, 5-18

examples . .. .. .. .o. .. .. .. .. .. .. .. .. .. ..

J-4



INDEX (Continued)

Page

HS1E . ........ ........... ................ C-5
*HSWE. .. ........... ............ ........ 5-16, 5-18

examples. ...... ........... .......... .... 5-19
HSWM l.. ........... ........... ............. C-5
*HSWlv. .. ......... ............ .......... 5-16, 5-18

examples. ....... ........... .......... ... 5-19
hysteresis (see *SWMEM)

I

ICCOMP (subroutine) .. .. .......... ........... ..... 7-5
example of dummy. .. ..... ........... .......... 2-12
format. .. ......... ........... ............ .. D-7
printing from .. .. ........ .......... .......... 6-11
when written .. .. ........... ................. D-5

*ICCOMP. .. ....... ........... ..... ....... 7-5, 7-6
example. .. ........... ........... .......... 7-6

*IDEC LARE
fixed dimension. .. ........... ........... .. H-3, H-4

example .. ... ........... ........... ..... H-4
variable dimension .. .. ........ ............ H-16 to H--19

examples .. ...... ........... ........-- 16, H- 19
IDENT (subroutine) .. .. ......... ........... ....... H-11
IEVENT .. .. .......... ........... ......... 5-11, C-1
IFORM..................................C-10
Ill- conditioned s9ystem.......................-9, 4-10, G-2
*IM~AX................................ ....... 6-14

* IMSORC (ie............................D-2, D-4
idpnent variable- (see T

*INFORM
fixed dimension. .. ........... ............ H-5 to H-7

*examples. ... .......... ............ .... H-6
variable dimnension .. ......... .......... .. H-16to H-19

examples. ... ........... ............ H-16, H--20
initial conditions (see *IV, *ICCOMP)
inputs..... .......... ........... ..... . 7-1 to 7-9

initial conditions........ ........... .. 7-2, 7-3, 7-5, 7-6
miscellaneous. .. .......... .......... .... . . . 7-7

*run times .. ........ ........... ......... 7-1, 7-2
to control accuracy .. .. ..... ........... ..... . . . 7-7
user cards. .. ....... ........... .......... 7-6, F-z
user files .. ......... .......... .......... 7-6, F-~2

user paramreters . ...................... ... 7-3

J-5



INDEX (Continued)

Page

integration package .. .. ........... ..... 4-1 to 4-10, E-1 to E-4
Adams integration. .. ........ ..... 4-4, 4-5, E-1, D-16, D-17
alternatives. .... ........... ....................... 4-1
error control .. .......... ..... 4-4 to 4-7, 4-10, E-1 to E-4
Predictor- Corrector .. .. ....... 4-9, 4-10, E-3, E-4, D-ZO to D-ZZ
Runge-Kutta .. ...... ...... 4-6 to 4-8, E-1 to E-3, D- 18, D- 19
solution accuracy .. ........ ........... ........ 4-3
stepsize control .. ..... ........... .......... 4-2, 4-3

integrator equations .. ......... ........... .... E- I to E-4
INTERP (see INRKPG, ADMNTP)
interpolation of printed values. .. ......... ........... 6-4, 6-5
ISWTYP. .. ...... ........... ........... ...... C-8
................ ........... ........... .......... 7-2, 7-3

J

J LINE... ........... ........... ............ C-10
job control cards (see control cards)
JSTART. .. ...... ........... ............ ..... C-7

K

KCOUNT .. .. ....... ........... ....... 4-9, D-Z1to D-2

KFLAG. .. .......... ........... ............. C-7

L

large simulations .. .. ........... ........... ... F-4, F-5
L4INES .. ........... ............ ............ C- 1

* M

MAIN (PROGRAM)
examples. ....... ............ ...........- 7, 6-17
format .. ..... ........... ........... ...... D-6
when written .. .... .......... ............ .... D-4

MATADD (subroutine) . ... .. .. .. .. .. .. .. .. .. ... H-il
*MATINV (subroutine). ........ ........... ......... H-1l

MATMAT (subroutine) .............................. H-11
matrix equations (see WHELP)
M.ATSUB (subroutine) .. .......... ........... ..... H-11
MATZRO (subroutine) .. ........ ........... ....... H-11

3-6



INDEX (Continued)

Page

MAX .. .. ...... ........... ........... ....... C-9
MvAXCH-R .. ... ........... ........... .......... C-6
MvAXCL . .. ....... ........... .......... ..... C-6
MAXDER .. ... ........... ........... .......... C-7
MAXMEM. .. ... ........... ........... ............. C-9
*MAXPLOZTS. .. ....... ........... ....... 6-6, 6-7, 6-14
MAXSWS .. ..... ........... ........... ....... C-9
*METHOD . .. .. .......... ................... 4-1, D-4

MF . . . . . .. . . . . . . . . . . . . . . . . . . .. . C-7
MISCEL (common block). .. ..... ........... ......... C-5
MOVE (subroutine).. .. .......... ..... .......- 3,* 3-4, H-11
multiple runs. .. ...... ........... ........... F-i to F-3
IvXL. .. .......... ........... ........... ... C-I0

N

NALTER .. ..... ............ .......... ....... C-8
-. ~NCHNG. .. ....... ........... ............... C-8

NDISPR. .. ...... ..... ...... ..... ....- , 5-17,5-18,C-6
NDISPR (common block). .. ........ ........... ... 5-18, C-6
NEGATE (subroutine) .. ....... ........... ......... H-11
NEQ (neg). .. .... ........... ............. 3-2, 7-1, C-5
NEVENT .. .. ..... ........... ........... ...... C-9
*NEVENT .. .. ......... .......... ............. 5-11
NFIRST. .. ...... ........... ........... ...... C-6

NLCL.. .... ........... ........... ......... C-9
*NI0CAL .. . . . .. .. .. .. .. .. .. .. .. .. .. .. .. . .6-14

noise inputs................................4-8
nonlinearitie; s see discontinuiti'es)
NOLT.. .. ..... ........... ........... ...... C-9
NOTIFY (subroutine). .. ...... ........... ...... 5-11, 5-16
NPGE.. .. ............ ........... .......... C-10
NPOIN . .. .... ........ .. .. .. .. .. .. .. .. .. . .C-9
NTAP11. .. .... ........... ........... ......... C-4
NUMvS'P . .. ......... ........... ....... .. .... C-4

0

ODESOL (see ESPPC, ESPRK2, ESPRK4, ADAMS)
O UT . . . .. .. . .. . . . . . . . .. .. .. . ... .. .. .. * . C-l0

J-7

~ I________________



INDEX (Continued)

Page

output .. ...... ...... ...... ..... ........ 6-1 to 6-17
accuracy. .. ... ..... ...... ...... ...... 6-4, 6-5, 6-7
alternatives .. ... ...... ...... ...... ...... ... 6-1
data file. .. ..... ...... ...... ...... ... 6-13 to 6-17
g raphic. .. .. ...... ...... ...... ...... .. 6-5 to 6-11
listing. .. ..... ...... ..... ....... .... 2-16 toZ2-19

initial printout example .. .. .... ...... ...... ... 2-16
printer plot examples .. .. .... ...... ....... 2-18, 2-19
user printout examples. .. ... ...... ...... ...... 2-17

plotted (see graphic)
printed. .... ...... ...... ....... 6-1 to 6-5, 6-11, 6-12
tape (see data file)
See also *PRINT, *HEADINGS.

OUTPUT (subroutine). .. .. ..... ...... ...... ........ 6-2
example .. ... ...... ..... ...... ...... ...... 2-11
format .. .. ..... ...... ...... ...... ........ D-7
printing from. .. .. .... ...... ...... ...... .... 6-12
when written. .. ... ..... ...... ...... ...... ... D-5

*OUTPUT. .. .. ...... .. ..... ...... ...... .... 6-3, 6-4
examples. .. .. ...... ...... ...... ...... .. 6-4, 6-6

OVERLAY. .. ...... ...... ...... ...... ........ 6-8
OVERLAY1 .. .. ..... ...... ...... ...... ........ 6-8
overlays (plotting) .. ... ...... ...... ...... ........ 6-8

from multiple runs. .. ...... ...... ...... ... F- I to F-3

P

PACKER (subroutine). .. ...... ..... ...... ......... D-9
PAR .. .. .... ..... ...... ...... ...... ... 7-3, 7-4, C-6

examples. ... ...... ...... ...... ...... .. 2-3, 7-4
*PAR. .. ... ...... ...... ...... ...... ...... 7-3, 7-4

example s. ... ...... ...... ...... ...... .. 2-3, 7-4
parameters (see *PAR)
PARS (commxon block) .. ... ...... .................- 6
PLO~T............................ ........... 6-6.6-13 c-i1, C-4
plotting. .. .... ..... ...... ....... 6-5 to 61l1, 6-13 to 6-16

accuracy .. .. .... ...... ...... ...... ....... 6-7
alternatives .. ... ...... ...... ...... ...... ... 6-5
controlling at switch times . .. .. .. .. .. .. .. .. .5-17, 5-18
from TAPEll .. ... ...... ...... ...... ... 6-13 to6-16
numrber of plots .. ... ...... ...... ...... ....... 6-6
overlays from different runs .. ... ...... ...... ... F-2, F-3

J-8



INDEX (Continued)

Page

storing plot data. .. ........ ........... ......... 6-6
using *GRAPH. .. ........ ........... ..... 6-5 to 6-11
using Program ESPPLT . .. ......... ......... 6-13 to 6-16

PRECOMP (Program). ... ........... ....... 7-6, D-4 to D-7
cards written by. .. ....... ........... ..... D-5 to D-7
how used .. ........................... D-2, D-3
sequence of events........................D-4, D-5
termination during .. .. .......... ........... .... G-1

PRINT .. .......... ........... .......... .... C-1
PRINT (1) .. ...... ........... .......... .... 6-5, 6-12

examples .. .. .......... ........... ..... 6-12, 6-17
*PRINT .. .... ........... ........... ... 6-1 to 6-4, 6-6

examples .. .. .......... ............ 2-4, 6-2, 6-3, 6-4
printing .. ... ........... ........... 6-1to 6-5, 6-11, 6_12

accuracy. ........ ........... ........... 6-4, 6-5
controlling at switch times. ... ........... ..... 5-17, 5-18
in *ICCOMP .. ..... ........... .......... .... 6-11
in *DERIVS .. ......... ........... .......... 6-12

in *OUTPUT. .. ........ ........... .......... 6-12
user-formatted .. .......... .......... .... 6-11, 6-12

print interval (see HP, hprinti)
printout, debugging .. .. .......... ........... ... G-1, G-2

Q

Q . ... ........... ........... .............. C-5

example. ... ........... ........... ......... 4-4

R

READIN (common block). .. ........ .......... ....... c-6
READIT (subroutine). ......... .......... ...... D-4, D-9
reserved names. ..... ........... ........... C-11, C-12
*RETUJRN ... .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 7-9

RKCONT (common block)
format and contents. .. .......... ........... .... C-6
use. .. .... ...... ...... ...... ...... . . . . . 4-7

*RUN ..... ............ .......... ....... 7-1, 7-2
*RUNC *.. .. .. .. .. .. .. . .. . . . . . .F-2, F-3
RUNGE-KUTTA integration. .................... 4 -6 t o 4 -8
run-time routines .. . . . .. 'v60.. .. .. .. .. .. . .. .. . D-7 to D-9

3-9



INDEX (Continued)

Page

S

*SAMESIZE
fixed dimension .. ...... ........... ......... H-3, H-4

example .. .. ........... ............ ..... H-4
variable dimension. .. ... .............. .. .. . H-16 to H-19

examples .. ....... ........... H-16, H-18, H- 19, H-20
SCALE .. ...... ........... ............ ...... 6-9
SCAMAT (subroutine). .... ........... ........ .... H-11
SCR1(200). .. ..... ........... ............ .... C-4
SECNZR (subroutine) .. .. ......... ............ ..... D-9
SIZExxyy .. .... ........... ........... ........ 6-8
SKPFIL (subroutine). .. ......... ........... ....... D-9
SMALL .. ... ........... ........... ........... 6-8
stacked runs .. ....... .......... ........... F- I to F-3
steps i ze

control
by Adams.. .... ............ ........... 4-4, 4-5
by Predictor -Corrector. .. ... ........... .... 4-9, 4-10
by Runge -Kutta. .. ......... ........... ..... 4-6

by user .. ...... ........... ........... 4-2, 4-3
initial selection. .. ......................... 4-2
relationship to print interval. .. .......... ....... 6-4, 6-5

STFPAR (common block) .. .. ......... .................- 7
STOP .. ... ............ ........... ........ C-1, C-5
*STOP.... .......... ........... ............ 7-9
STPCON (common block). .. ... ........... ......... 4-2, C-7

format and contents. .. ......... ............ .... C-7
use .. .. ........... ........... ............ 4-2

-:-subroutines (see specific naZLme s)
SWCHi .. ........ ........... .......... 5-3, 5-14, 5-15

examples .. .. ......... ........... ........... 5-4
SWDBUG .. ...... ........... ........... ...... C-8
SWHPAR (common block). .... ........... ......... 5-9, C-8
SWINIT (subroutine) .. ....... ........... ..... .. .... D-9
SWINPT (subroutine). .. ....... ............. 5-2, 5-12 to 5-14

examples .. .......... ........... ........... 2-9
format .. .... ........... ........... ....... D-6
user-written. .. ...... ........... ............ 5-14

*SW~~ITCHES .. .. ......... ..................... 5-14
Swvi . .. ......... .......... ......... 5'-7, 5-1*4, 5-15
SWMEM. .. ..... ........... .................. C_9

S WME M(i,4) .. ...... ...... .......... 5-7,5-*14,5-15, 5-17

J-10



INDEX (Continued)

Page

*SWMEM .. ..................... 5-5 to 5-10, 5-12 to 5-18
defining inputs.... .......... .. ........ 5-6, 5-1Z to 5-14
defining output .. ... .................. 5-7, 5-14, 5-15
defining characteristics.......... .'...... ...... 5-7, 5-8, 5-9
how it works. .. ........ .......... ...... 5-15 to 5-18

cSWMEMGNT .. .. .......... .......... .......... 5-14
*SWMEMDATA .. ... ........... ........... 5-6, 5-7 to 5-9
SWMEMN (subroutine). .. ......... .......... 5-6, 5-12 to 5-14

example of dummy. .. ..... ........... .......... 2-10
format. .. ......... .......... ............. D-7
user-written. .. ....... .......... ............ 5-14

*SWMEMSET .. ... ........... .......... ..... 5-6, 5-10
SWSET .. ....... ........... ................ C-8

SWTH~)............. ......... .. 5-3, 5-14, 5-15, 5-17, C-8
examples. .. ..... ........... .......... ..... 5-4

*SWTGH .. ........ ........... .... 5-2 to 5-5, 5-12 to 5-18
defining inputs .. .... .......... .... 5-2 to 5-4, 5-12 to 5-14
defining output. .. ....... ............ 5-3, 5-4, 5-14, 5-15
examples. ....... .......... .......... 2-3, 5-3, 5-4
how it works ........................ *...... ...... 5-15 to 5-18

SWTCHE (subroutine). ..... .......... ............. D-9
SWTCHS (common block). .. ...... .......... .......- 8, C_9

T

T. ... .......... ......... 3-2, 4-4, 4-6, 4-7, 4-9, 4-10, C-i
*ITO. .. ...... .......... ........... ........ 4-2, C-3

TAPE1 . .. ...... .......... ... 6-7, 6-13, B-4, B-5, D-Z, D-3
TAPE12 .. .. .......... ..... 7-6, B-4, B-5, D-2, D-3, D-5, F-2
TAPE15. .. ..... ........... .......... ..... D-2, D-3

*T ERMH . .. ........ ........... ........... ... C-6
TF . .. ... ................... ............ C-3

def., length, ad blok........................
'*TICKPLOTS .. ... .......... .......... ......... 6-14
time, start and stop .. ...... ........... ......... 7-1, 7-2
TIMEIN (subroutine) .. ..... ........... ............ D-9

*TIMEOtIT (subroutine) .. ... .......... ........... ... D-9
TIT LE. .... ........... .......... ........... C_10
*TIITLE. . ......... .......... .......... ...... 7-8

example . ....... .......... ............... 2-5
TODAY. .. ......... ........... ............ C-x0.1 ~ ~T .. .......... .............................. . C-3

J-11



INDEX (Concluded)

Page

TRNSMUL (subroutine). ........ ........... ....... H-i1
TRNSPS (subroutine). .......... ........... ...... H-li
TYPE t1 (t 2 ) (t3 ). ...... ........... ........... 6-9, 6-10

U

UNIPI (common block) .. .... ........... .............- 9
UNIP2 (common block). .. ......... ........... ..... C-10

V

VA LE VS............................ .. ........... . ... . .. .. .. .. C-5
VA LMEM. .. .... ...... ...... ...... ...... ..... C-5
VALUES. ...... .......... ........... ..... C-i, C-5

in EVENTS. .. ...... ........... ............. 5-11
in SWINPT .. .... ........... ........... .. 5-2, 5-14
in SWMEMN .. ..... ............ .......... 5-6, 5-14

variables, alphabetical list .. .......... ........... ... C-i
VPLOT .. ...... ........... ........... ....... C-9

W

WHELP. .. ........ ........... ........... H-1 toH-Z1
data storage .. ...... ........... ..........- i5, H-i5

*declaring variablesH
fixed dimensions. .... ........... ........ H-2 to H-7
variable dimensions .. .......... ......... H-16 to H1-19

defining derivatives in .. .. ........... .......... 3-3, 3-4
how it works ........................... .H-i, H-2
matrix routines .. ........ ........... ......... H-li

*operator symbols .. ........ ........... ........ H-10
packing data .. ...... ........... ......... H-19 to H1-21
special features .. ....... .......... ...... ..... H-12
writing WHELP expressions .. .. ......... ....... 1-8 to 11-13

P See also *IDECLARE, *SAMESIZE, -INFORM.
Wilkinson's method. ....... ........... ........... 5-16
WLPTOF (subroutine). ... ........... ..........H-19 to H1-21

......... ............ .......... .......... 3-1 to 3-7, C-i, C-4

Yo-See also *IV ............................. %C 4 F-

YPRNT(100). ...... .......... ............ ..... C-4

* J-12


